Renewables | Popular Science https://www.popsci.com/category/renewables/ Awe-inspiring science reporting, technology news, and DIY projects. Skunks to space robots, primates to climates. That's Popular Science, 145 years strong. Tue, 07 May 2024 15:13:18 +0000 en-US hourly 1 https://wordpress.org/?v=6.2.2 https://www.popsci.com/uploads/2021/04/28/cropped-PSC3.png?auto=webp&width=32&height=32 Renewables | Popular Science https://www.popsci.com/category/renewables/ 32 32 Welcome aboard the world’s first hydrogen fuel cell superyacht https://www.popsci.com/environment/hydrogen-fuel-superyacht/ Tue, 07 May 2024 15:13:18 +0000 https://www.popsci.com/?p=613800
Project 821 hydrogen fuel superyacht in port
'Project 821' took five years to build, and is currently for sale. Credit: Feadship

'Project 821' is an enticing statement piece for the aspiring, eco-conscious Bond villain.

The post Welcome aboard the world’s first hydrogen fuel cell superyacht appeared first on Popular Science.

]]>
Project 821 hydrogen fuel superyacht in port
'Project 821' took five years to build, and is currently for sale. Credit: Feadship

Superyachts are notoriously dirty luxury toys, with a single billionaire’s boat emitting as much as 7,020 tons of CO2 per year. And while it’s unlikely uber-wealthy shoppers are going to forgo from their statement vessels anytime soon, at the very least there’s now a chance to make superyachts greener. That’s the idea behind the new Project 821, billed as the world’s first hydrogen fuel cell superyacht.

Announced over the weekend by Danish shipyard cooperative Feadship, Project 821 arrives following five years of design and construction. Measuring a massive 260-feet-long, the zero-diesel boat reportedly sails shorter distances than standard superyachts on the market, but still operates its hotel load and amenities using completely emissionless green hydrogen power.

Project 821 hydrogen superyacht foreshot
The superyacht’s liquid hydrogen must remain in cryogenic tanks cooled to -423.4 degrees Fahrenheit. Credit: Feadshipt

Hydrogen cells generate power by turning extremely lightweight liquid hydrogen into electricity stored in lithium-ion batteries. But unlike fossil fuel engines’ noxious smoke and other pollutants, hydrogen cells only emit harmless water vapor. The technology remained cost-prohibitive and logistically challenging for years, but recent advancements have allowed designers to start integrating the green alternative into cars, planes, and boats.

There are still hurdles, however. Although lightweight, liquid hydrogen must be housed in massive, double-walled -423.4 degrees Fahrenheit cryogenic storage tanks within a dedicated section of the vessel. According to Feadship, liquid hydrogen requires 8-10 times more storage space for the same amount of energy created by diesel fuel. That—along with 16 fuel cells, a switchboard connection for the DC electrical grid, and water vapor emission vent stacks—necessitated adding an extra 13-feet to the vessel’s original specifications. But these size requirements ironically makes superyachts such as Project 821 arguably ideal for hydrogen fuel cell integration.

Hydrogen superyacht aft image
Although emissionless, ‘Project 821’ is still not capable of standard-length voyages. Credit: Feadship

And it certainly sounds like Project 821 fulfills the “superyacht” prerequisites, with five decks above the waterline and two below it. The 14 balconies and seven fold-out platforms also house a pool, Jacuzzi, steam room, two bedrooms, two bathrooms, gym, pantry, fireplace-equipped offices, living room, library, and a full walkaround deck.

Such luxuries, however, will need to remain relatively close-to-harbor for the time being. Project 821 still isn’t capable of generating and storing enough power to embark on lengthy crossings, but it can handle an “entire week’s worth of silent operation at anchor or [briefly] navigating emission-free at 10 knots while leaving harbors or cruising in protected marine zones,” according to Feadship.

[Related: This liquid hydrogen-powered plane successfully completed its first test flights.]

“We have now shown that cryogenic storage of liquified hydrogen in the interior of a superyacht is a viable solution,” Feadship Director and Royal Van Lent Shipyard CEO Jan-Bart Verkuyl said in the recent announcement, adding that “additional fuel cell innovations… are on the near horizon.”

Of course, the greenest solution remains completely divesting from ostentatious, multimillion-dollar vanity flotillas before rising sea levels (and angry orcas) overwhelm even the wealthiest billionaires’ harbors. But it’s at least somewhat nice to see a new eco-friendly advancement on the market—even if it still looks like a Bond villain’s getaway vehicle.

The post Welcome aboard the world’s first hydrogen fuel cell superyacht appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Testing the waters: Scotland surges ahead on ocean Power https://www.popsci.com/environment/ocean-power-scotland/ Mon, 06 May 2024 12:00:00 +0000 https://www.popsci.com/?p=612980
A tidal stream energy generator called the O2, made by Orbital Marine Power Ltd, extracts energy from the tides off the coast of Scotland and feeds it into the electric grid.
A tidal stream energy generator called the O2, made by Orbital Marine Power Ltd, extracts energy from the tides off the coast of Scotland and feeds it into the electric grid. Orbital Marine Power via Undark

Tidal and wave energy may be the largest untapped resources of renewable energy on the planet. But will they work?

The post Testing the waters: Scotland surges ahead on ocean Power appeared first on Popular Science.

]]>
A tidal stream energy generator called the O2, made by Orbital Marine Power Ltd, extracts energy from the tides off the coast of Scotland and feeds it into the electric grid.
A tidal stream energy generator called the O2, made by Orbital Marine Power Ltd, extracts energy from the tides off the coast of Scotland and feeds it into the electric grid. Orbital Marine Power via Undark

This article was originally featured on Undark.

By quirk of geography, the Orkney islands, located off the northern tip of Scotland, are unusually well positioned to bear witness to the ocean’s might. On the archipelago’s western shores, waves crash relentlessly against the rocks. And within its numerous channels, the tides push an enormous volume of water from the North Atlantic to the North Sea and back again, twice every day, squeezing between and around the islands of Rousay, Westray, Eday, and a myriad of other ones.

No wonder the European Marine Energy Center, one of the world’s leading agencies for developing and testing wave and tidal power technologies, chose to set up shop here; the nonprofit agency hosts both wave and tidal power testing facilities on Orkney.

EMEC’s wave-energy testing site is at Billia Croo, located on the western shore of Orkney’s largest island. On a relatively calm day last spring, Lisa MacKenzie, EMEC’s marketing and communications manager, surveyed the gray waters from the Billia Croo site. “We get an average of 2-to-3-meter wave height,” she said, or roughly 6.5 to 10 feet. “But we’ve had waves of over 20 meters”—more than 65 feet—during “really extreme conditions over the winter.”

The surrounding landscape is windswept and nearly treeless. Were one to sail directly west from this spot, “the first bit of land that you would hit is Canada,” MacKenzie said.

EMEC was founded in 2003 following a recommendation by the U.K. House of Commons Science and Technology Committee (now known as the Science, Innovation, and Technology Committee). To date it has received about $53 million in public investment; its funders include the European Union, the U.K. government, the Scottish government, and the Orkney Islands Council. More than 20 corporate clients have used EMEC’s facilities, and more ocean energy converters have been tested at the center than at any other site in the world.

The Billia Croo facility opened in 2004 on land rented from a local farmer. An array of transformers, housed in green bins each the size of a compact car, lines the perimeter of the site’s small parking lot. A modest stone-wall hut, which blends into the landscape, houses the facility’s control center and is filled electronic switching equipment. The testing berths are offshore, where EMEC’s clients can test all manner of wave-energy conversion devices, with cables running along the seabed to the control hut. Any electricity produced can also be fed directly into the U.K. national grid.

TK
A wave energy device called the Oyster 800, made by Aquamarine Power, in operation at EMEC’s Billia Croo site. Numerous devices from more than 20 clients have been tested at EMEC’s facilities. Visual: Aquamarine Power via Undark

Waves, like the wind that produces them, are not a constant; both are inherently variable. And they are linked: Wind imparts energy to the ocean, which then dissipates as waves over a longer time scale. As MacKenzie puts it, waves are the aftermath of wind.

Harnessing the energy of waves is one way to draw power from the oceans; another is to exploit the energy of the tides. Of the two energy sources, tidal is more constant, given the tides’ regular-as-clockwork response to the push and pull of the moon and sun.

EMEC runs a grid-connected tidal energy test facility located off the southern tip of Eday. “We get a peak tidal flow over 4 meters per second, which is about 8 knots,” MacKenzie said. “So about half a billion tons of water passes through there, every hour, at peak tide.”

As MacKenzie puts it, waves are the aftermath of wind.

And that flow is comparatively predictable—far more so than, say, wind or solar, which are stymied by calm or cloudy conditions. “We can predict the tides 200 years into the future,” MacKenzie said. “Which means that we can predict how much power can be derived from the tides, 200 years into the future.”

There is no question that the planet’s oceans contain enormous amounts of energy. According to a 2021 study published in Proceedings of the Royal Society A, tidal stream energy alone could provide the equivalent of 11 percent of the U.K.’s annual electricity needs. Power from the oceans is “the largest untapped resource of renewable energy on the planet right now,” said Rémi Gruet, CEO of Ocean Energy Europe, the world’s largest network of ocean energy professionals.

The question is, can that energy be harnessed economically—or is the idea of pulling watts from the water doomed to be a mere sideshow in the quest for green energy? After decades of testing at tidal energy facilities like EMEC and other smaller-scale facilities around the globe, only a handful of commercial wave and tidal power facilities are online, and they contribute a miniscule amount to the world’s energy production. Even in Orkney, a leader in the quest to extract energy from the ocean, wave and tidal power account for just a fraction of the islands’ energy consumption.

“We can predict how much power can be derived from the tides, 200 years into the future.”

Notably, wave and tidal lag behind other forms of renewable energy. “It’s fair to say that we’re nowhere near a wind or solar industry at this point,” says Carrie Schmaus, a marine energy technology manager at the U.S. Department of Energy’s Water Power Technologies Office.

Still, for the technology’s supporters, the ocean is seen as a virtually limitless source of energy waiting to be tapped, if only governments step up with the public investment needed to kick the industry into high gear. “There’s an energy resource there,” says Andrew Scott, CEO of Edinburgh-based Orbital Marine Power Ltd. “The question is, what are you prepared to pay to extract that energy?”


On paper, the power of the world’s oceans is indisputable: Tidal stream energy is estimated to represent a global resource of some 1,200 terawatt-hours (a terawatt is one trillion watts) per year, while wave power is even more abundant, adding up to almost 30,000 terawatt-hours per year—enough, in theory, to meet all of humanity’s energy needs 10 times over.

As promising as tidal and wave energy may seem, the list of obstacles to widespread adoption is significant: the formidable cost of scaling up the technology; bureaucratic hurdles; environmental concerns, including possible effects on fish and sea mammals; and, in the case of tidal power, geographical restrictions. There are also fears that rising sea levels could substantially alter ocean movements in a way that could impact current or planned tidal power facilities. In a 2022 paper published in the journal Renewable and Sustainable Energy Reviews, Danial Khojasteh and his co-authors noted that “long-term management decisions associated with harnessing the potential of tidal energy schemes within estuaries should be made with caution.”

Renewables photo

The question of cost is paramount. Even though the cost of tidal and wave energy may be dropping, the cost of wind and solar are dropping even faster, said Brian Polagye, a University of Washington mechanical engineer who studies marine renewable energy. That means tidal and wave energy can be seen as succeeding and failing at the same time.

“Until your price comes down to the point where you’re competitive with other forms of generation—either because you’re directly competitive, or you’re being subsidized until you get to that point—the technologies really can’t take off,” Polagye said. Nonetheless, he added, “I do feel these are technologies that have a long-term role to play in our energy systems.”

Schmaus, at the Water Power Technologies Office, describes wave and tidal power as a nascent industry (as did others interviewed for this story). By way of comparison, she pointed out that in the early days of the wind power industry, all manner of turbine designs were tested. “And then at some point that technology converged,” she said. “Now we have the three-bladed turbine we all know and love. Marine energy is still in that ideation kind of area. We have not had technology convergence yet.”

For the technology’s supporters, the ocean is seen as a virtually limitless source of energy waiting to be tapped.

One of her department’s goals, she says, is to learn from small-scale demonstration projects, scale up designs, and bring down costs. This scaling-up is just what Scott’s Orbital Marine is trying to achieve in Orkney. They’re the company behind the O2 tidal stream energy generator—the world’s most powerful such device—located in the Fall of Warness, south of Eday, and connected to the grid via EMEC’s tidal energy test site. (MacKenzie described the project as “one of our biggest success stories.”) The O2 is a 240-foot-long structure shaped like a submarine (though it stays on the surface), with two submerged arms, each supporting a twin-bladed turbine. In an interview in a cavernous exhibition hall at the annual All-Energy conference in Glasgow last spring, and later by email, Scott spoke of his vision for the company, and the potential of tidal stream power. He said that Orbital Marine hopes to add another six turbines to the Fall of Warness site over the next few years, and, in time, perhaps another dozen.

Scott acknowledges the forbidding technical challenges—especially the difficulty of designing machinery that can withstand seawater’s salt and grime for months or years on end. And he has seen his share of unrealistic proposals over the years. At times “it was a bit of a joke,” he recalled. People saw how much traction wind energy was getting, he says, and figured wind’s success could be readily duplicated beneath the waves.

“People would say, ‘Just go and ‘marinize’ it, and it will be equally successful in the tidal application,” he continued. “It was as naïve as that.”

tk
Orbital Marine’s O2 tidal stream energy generator operating at EMEC’s Fall of Warness grid-connected test site. The O2 is 240 feet long with two submerged twin-bladed turbines. One of EMEC’s biggest success stories, it currently provides about 10 percent of Orkney’s electricity—enough to power about 2,000 homes. Visual: Orbital Marine Power via Undark

But many of those early challenges have been overcome, Scott said. He noted that O2 is currently providing about 10 percent of Orkney’s electricity, enough to power about 2,000 homes. Because the islands are sparsely populated, and rich in wind energy, Orkney actually produces more energy than is needed locally, which means the islands are already a net contributor to the U.K. grid—and some of that energy comes from O2. Scott said he foresees Orbital Marine generating about $17.5 million from electricity sales per year, over the turbine array’s projected 20-year life. “We’re effectively at that critical stage where we start to grow commercial revenues and profits,” Scott said.

Of course, most parts of the world are not blessed with Orkney’s extreme tidal flows. “It is niche,” Scott acknowledged. “But where it does exist, it represents a phenomenally dense form of renewable energy. Because water is 800 times the density of air.”

While some regions have more powerful tides than others, waves can be found pretty much everywhere that ocean meets land. During a visit to the FloWave Ocean Energy Research Facility on the campus of the University of Edinburgh, a crew from a company called Mocean Energy tested a floating wave-energy converter in a massive circular water tank, some 80 feet across. Paddles along the perimeter of the tank create waves that strive to mimic the conditions of the open seas.

So far, there’s no one preferred way to extract energy from waves—just as there’s no one preferred way to build a tidal stream turbine—so various designs are being tested. The one Mocean was testing uses a simple electrical generator to convert the kinetic energy of the waves into electricity. As Mocean’s converter bobbed in response to the waves, Chris Retzler, the company’s technical director and co-founder, spoke of the path to commercialization, saying he hoped to have a product on the market in 12 to 18 months, and “a much larger-scale, grid-connected machine” in three to four years.

“People would say, ‘Just go and ‘marinize’ it, and it will be equally successful in the tidal application. It was as naïve as that.”

For now, both wave energy and tidal energy lag behind wind in terms of investment and commercialization, but the gap may be closing, Retzler said. “The wind industry, of course, has been phenomenally successful—but it started in much the same way, with small-scale experimentation, gradually building up,” he says. “And we’re following a similar pattern here. We learn by doing.”

Retzler also noted that there is a natural symbiosis between wave energy, with its long-term dependability, and wind and solar, which have much greater hour-to-hour and day-to day fluctuations. “The ocean is storing wind energy over time,” he said. “Waves take a while to build up, and then a long while to decay. That smooths out the production of energy. So wave energy can provide a more stable contribution, and therefore can fill in the gaps that are left by wind and solar.”

The United States has not traditionally been a big player in ocean power technologies, though that may be changing. An established testing facility known as PacWave North, located off the coast of Oregon, will soon be joined by PacWave South, a larger facility now under construction in deeper waters south of Newport. PacWave, funded by the Department of Energy, the State of Oregon, and other public and private entities, bills itself as the first pre-permitted, utility-scale, grid-connected, open-water test facility in the U.S.

Burke Hales, an oceanographer at Oregon State University and PacWave’s chief scientist, describes PacWave as conceptually similar to Scotland’s EMEC, which was one of PacWave’s design partners. “PacWave will be bigger, [with] more total power capability, more berths, more individual devices,” he says. Hales cites figures from the Department of Energy that suggest wave power could meet 15 percent of the nation’s electricity demand.

While the Oregon coast is synonymous with pounding waves, other locations may be better suited to small-scale projects that take advantage of the local geography. For example, in the village of Igiugig, in southwestern Alaska, there’s a demonstration project that draws energy from the estuary of the Kvichak River, via underwater turbines. That’s seen as a vast improvement on the current situation, in which the community trucks in diesel fuel at great cost.

And other U.S. projects may be on the horizon. In 2022, the Department of Energy pledged $35 million in funding “to advance tidal and river current energy systems” in a move that represents the largest such investment in the nation.

Back in Orkney, a company called SAE Renewables announced last winter that they’d hit the milestone of producing 50 gigawatt-hours of electricity with their tidal stream array in the Pentland Firth, the strait that separates Orkney from the Scottish mainland. Further north, in Shetland, Nova Innovation added a sixth turbine to its tidal array last year, which has been powering homes and businesses in the area since 2016.

Across Europe, some 2.2 megawatts of tidal stream capacity were added in 2021, up from just 260 kilowatts the year before. By comparison, Europe installed more than 17 gigawatts of wind power capacity in 2021 (87 percent of them on-shore). By 2022, wind accounted for well over a third of Europe’s energy consumption.


Tidal stream and wave power are not the only ways to extract energy from the oceans. In estuaries or bays with high tides, tidal barrages are another option, a practice dating back as far as 619 A.D. The idea is simple: Find an inlet with significant tides, and build a barrier with sluices that can open and close (similar to a traditional hydroelectric dam). Open the valves as the tide comes in, then direct the water through turbines as the tide goes out. So far, tidal barrages have historically seen more commercial use than tidal stream projects, notably in France (the world’s first commercial tidal power project, on the estuary of the Rance River, dates from 1966), and in South Korea.

As with tidal stream power, tidal barrages could be a natural fit in specific environments. For example, as low-lying countries like the Netherlands and Belgium look to build dikes and barriers to protect against rising ocean levels, tidal barrage generators may be a natural addition to already-planned projects. There is concern, however that tidal barrages can impact salinity and sediment levels and disrupt coastal ecology.

Interestingly, the spot with the world’s highest tides—the Bay of Fundy, which separates the Canadian provinces of New Brunswick and Nova Scotia—has also seen the most disappointment. The volume of water that whooshes through the bay twice each day could, on paper, generate up to 2,500 megawatts of power—roughly equivalent to two large nuclear reactors, enough to meet Nova Scotia’s electricity needs.

But efforts to harness those tides have been fraught. A tidal barrage power station opened on the bay in 1984, but ceased operations in 2019 following technical problems and concern over harm to fish in the bay. Tidal stream projects have been attempted in the bay as well, but have likewise struggled. Last year, a company called Sustainable Marine Energy Canada pulled the plug on its floating tidal turbine platform in the bay after five years of testing and $45 million in investment, citing bureaucratic barriers put in its way by the Canadian government. The company declared voluntary bankruptcy last spring, and in November one of its floating turbine platforms broke free from its mooring and ran aground on the bay’s south shore.


One thing industry insiders agree on is that, for all forms of wave and tidal energy, the path to commercialization requires significant public investment. A 2019 study pegged the cost of tidal energy for one commercial-scale project at $130 to $280 per megawatt-hour, compared to $20 to around $40 per megawatt-hour for wind. But according to Scott at Orbital Marine, it’s misleading to speak of tidal power as being expensive and wind and solar as being cheaper, because so much more investment has been pumped into the latter compared to the former. The green energy sector “has all this legacy background in terms of state intervention and subsidy,” he said. “And the whole thing is structured around taxation and subsidy.”

The path to commercialization for ocean energy projects can seem like a paradox, said Polagye. “Economies of scale occur because you’re building a lot of things,” and “you tend to build a lot of things because they’re the most cost-effective thing to build,” he said. “So it’s a chicken and egg problem, right?”

“It took the wind industry 20 years to get commercial and 40 years to get cheap, between the 1980s and today, so we are still well ahead of the curve.”

Gruet similarly sees the supposed lagging-behind of wave and tidal power as the result of a lack of public investment. “The industry has not received any subsidies in any shape or form in a similar way that the wind or solar industry have received in the early stage of their development,” he said. “And that has slowed down our development tremendously.”

He added that the cost of tidally generated power is already on par with that for floating offshore wind platforms. “So tidal and wave are not lagging behind,” he said. “It took the wind industry 20 years to get commercial and 40 years to get cheap, between the 1980s and today, so we are still well ahead of the curve.”

d
A wave energy device, the Blue X made by Mocean Energy, being tested at EMEC’s Scapa Flow test site in 2021. Though the path to commercialization for ocean energy projects includes many challenges—like significant public investment—proponents of the technology continue to forge ahead. Visual: Colin Keldie/EMEC via Undark

For EMEC’s MacKenzie, the latent energy of the world’s oceans represents a chance for her own country to make up for past mistakes in the race for renewables. She recalled an incident in 1987, when the U.K. secretary of state for energy, Cecil Parkinson, spoke in the House of Commons about the potential of wind power. Sure, it was a good idea in principle, he said, but he “cannot see the day when we shall be generating large quantities of electricity from wind.”

The U.K. hesitated—and Denmark jumped in. “Denmark absolutely won that race,” MacKenzie says. “And this is what we’re really keen to make sure doesn’t happen with wave and tidal.” (Today, wind power provides about one third of the U.K.’s electricity production. About 40 percent comes from coal, oil, and natural gas, while nuclear power and bioenergy provide about 15 percent and 11 percent respectively.)

For Scott, the power latent in the world’s oceans is an important resource in the fight against catastrophic climate change, even if its total contribution remains small compared to that of other renewables. “Inaction is not an option,” he says.

The post Testing the waters: Scotland surges ahead on ocean Power appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Battery prices are plummeting. That’s good news for the planet. https://www.popsci.com/environment/battery-prices/ Wed, 01 May 2024 17:51:43 +0000 https://www.popsci.com/?p=613236
solar power
Cheaper battery prices are increasing the reliability of solar power and helping drive its adoption. DepositPhotos

Battery prices could fall by 40% by 2030, but more work is to be done.

The post Battery prices are plummeting. That’s good news for the planet. appeared first on Popular Science.

]]>
solar power
Cheaper battery prices are increasing the reliability of solar power and helping drive its adoption. DepositPhotos

Climate scientists, for years, have urged governments around the world to switch from fossil fuels to renewable energy sources. Wind and solar plants have increased in popularity in recent years but they both have a fundamental problem. Lapses in sunlight and wind caused by weather events can make it difficult to reliably capture and store all that energy, especially when attempting to supply power to large cities. The solution to the reliability issue are batteries, and lots of them. 

A new report from the International Energy Agency (IEA) recently argued these hordes of batteries will play a critical role in determining whether or not ambitious climate goals established by international experts are ever met. Recent innovations in lithium-ion battery tech have significantly lowered their costs which in turn is helping make switches to renewable energy power sources more viable for communities around the world. Battery prices by 2030, the report notes, could fall by 40%. 

At the same time, increased demand for battery powered electric vehicles and energy produced from renewable sources means battery tech will need to get even cheaper in only a few short years in order to meet rising demands. All of this, according to IEA estimates, will require a six-fold increase in energy storage capacity by 2030. Cheap batteries will need to get even cheaper. 

“Reducing emissions and getting on track to meet international energy and climate targets will hinge on whether the world can scale up batteries fast enough,” IEA Executive Director Fatih Birol wrote. “Batteries are changing the game before our eyes.”

Lithium-ion battery costs have fallen more than any other energy technology 

Though lithium-ion batteries are typically associated with gadgets and other consumer electronic gizmos, that’s increasingly no longer their main use case. In 2023, according to the IEA, the energy sector accounted for 90% of all battery demand. The total lithium-ion battery market has increased nearly ten times the size it was just eight years ago. Costs associated with those batteries have plummeted by 90% in just the past 15 years, according to the report. Overall, the report notes, batteries have seen the sharpest price drops of any energy technology to date. Those falling battery prices have led to more affordable electricity vehicles and solar energy offered at price points comparable to fossil fuels. 

“The combination of solar PV (photovoltaic) and batteries is today competitive with new coal plants in India,” Birol said in a statement. “And just in the next few years, it will be cheaper than new coal in China and gas-fired power in the United States.”

As impressive as all those figures may sound, the IEA notes it still might not be nearly enough to support rising energy demands. In order to meet the United Nations’ goals of tripling renewable energy capacity by 2030, the IEA estimates global battery storage will need to increase by six times its current size. To do that, battery storage deployment will need to increase by an average of at least 25% every year. Batteries will need to have steep price drops while simultaneously maintaining or improving performance. The IEA estimates new innovations in battery chemistry and manufacturing could reduce lithium-ion costs globally by 40% between now and 2030. Battery manufacturing capacity is also currently limited to a select few countries, something the IEA says will need to change moving forward. 

“A shortfall in deploying enough batteries would risk stalling clean energy transitions in the power sector,” the report reads.

What cheaper batteries mean for consumers 

Increased adoption of electric vehicles and renewables power sources are playing a meaningful role in efforts to cut back on emissions. While EV adoption in the US has slightly slowed compared to previous years, the trend globally is up. EV deployment increased by 40% in 2023, a figure which translated to 14 million EVs hitting roads. The IEA estimates the continually growing fleet of electric vehicles could displace the need for 8 million barrels of oil every day by the end of the decade. In practical terms, lower costs associated with batteries will translate to cheaper electric vehicles in the near future. US drivers repeatedly cite pricing as one of the primary factors preventing them from switching to an EV. More affordable models driven partly by falling battery prices could encourage more drivers to make a switch and could even help make a dent in the Biden Administration’s goal of having 50 percent of all new vehicle sales be electric by 2030.

On the infrastructure side of the equation, cheaper energy storage prices means developing countries looking to create new power plants can choose more renewable options at prices comparable to non-renewable alternatives. Falling battery prices are also making it possible to deploy renewable microgrids in areas that are currently underserved by traditional energy grids. 

In places like the US, a more reliable energy sector buttressed by batteries would further improve the country’s energy independence and cut down on the need to purchase fossil fuels from other countries. Renewable energy sources accounted for just 19% of the US energy grid in 2020 but affordable, more reliable storage could alter that dynamic. Researchers from Stanford provided some evidence of that scenario by recently running a simulation showing the possibility of the US maintaining a 100% renewable energy grid by 2050.

Batteries have a critical mineral problem 

Cheaper batteries, at least how they are currently manufactured, aren’t a silver bullet. Today, the global battery market is largely dependent on critical minerals sourced from a concentrated handful of countries. China alone accounts for more than half of material processing for lithium and cobalt. Extracting these minerals from the Earth is dangerous work and can create its own source of damaging pollution. Massive mines can also radically alter the environment of entire communities

New types of batteries could offer some solutions to the mineral problem. Lithium ion phosphate (LFP) batteries, which are increasingly being used in new electric vehicles, rely on a different chemistry method which does not contain nickel or cobalt. Though more mineral intensive lithium-ion batteries still make up the vast majority of battery storage, (LFP) batteries accounted for 80% of new batteries made last year. Efforts to more effectively recycle aluminum, copper, and other resources found in mounding e-waste could also potentially help build out future batteries with less intensive mining. Less than 1% of rare earth metals found in e-waste are currently recycled. 

The post Battery prices are plummeting. That’s good news for the planet. appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Stellarator fusion reactor gets new life thanks to a creative magnet workaround https://www.popsci.com/environment/stellarator-fusion-reactor/ Fri, 05 Apr 2024 15:20:55 +0000 https://www.popsci.com/?p=609632
MUSE stellarator fusion reactor
A photo of MUSE, the first stellarator built at PPPL in 50 years and the first ever to use permanent magnets. Michael Livingston / PPPL Communications Department

Developed over 70 years ago, the stellarator has long been ignored in favor of options like tokamak reactors. It might be time for its 'quasiaxisymmetry' to shine.

The post Stellarator fusion reactor gets new life thanks to a creative magnet workaround appeared first on Popular Science.

]]>
MUSE stellarator fusion reactor
A photo of MUSE, the first stellarator built at PPPL in 50 years and the first ever to use permanent magnets. Michael Livingston / PPPL Communications Department

The quest to harness the holy grail of clean energy is potentially moving a step in the right direction thanks to the same principles behind refrigerator magnets. Earlier this week, researchers at the Department of Energy’s Princeton Plasma Physics Laboratory (PPPL) revealed their new stellarator–a unique fusion reactor that uses off-the-shelf and 3D-printed materials to contain its superheated plasma.

First conceptualized over 70 years ago by PPPL’s founder, Lyman Spitzer, a traditional stellarator works by employing electromagnets precisely arranged in complex shapes to generate magnetic fields using electricity. Unlike tokamak reactors, stellarators do not need to run electric current specifically through their plasma to create magnetic forces—a process that can interfere with fusion reactions. That said, tokamaks still effectively confine their plasma so well that they have been the preferred reactor choice for researchers, especially when factoring in a stellarator’s comparative costs and difficulties. Because of all this, Spitzer’s design has remained largely unused for decades.

[Related: The world’s largest experimental tokamak nuclear fusion reactor is live.]

Engineers behind the new stellarator known as MUSE, however, say their workaround could solve these barriers. Instead of electromagnets, the device uses permanent magnets—albeit much more powerful and finely tuned than ones found in everyday novelty and souvenir collectibles. MUSE requires permanent magnets made using rare-earth metals that can exceed 1.2 teslas, the unit of measurement for magnetic flux density. In comparison, standard ferrite or ceramic permanent magnets usually exhibit between 0.5-to-1 teslas.

“I realized that even if they were situated alongside other magnets, rare-earth permanent magnets could generate and maintain the magnetic fields necessary to confine the plasma so fusion reactions can occur, and that’s the property that makes this technique work,” Michael Zarnstorff, a PPPL senior research physicist and MUSE principle investigator, said in a statement.

t left: Some of the permanent magnets that make MUSE’s innovative concept possible. At right: A close-up of MUSE's 3D-printed shell.
Left: Some of the permanent magnets that make MUSE’s innovative concept possible. Right: A close-up of MUSE’s 3D-printed shell. Credit: Xu Chu / PPPL and Michael Livingston / PPPL Communications Department

Building a stellarator with permanent magnets is a “completely new” approach, PPPL graduate student Tony Qian added. Qian also explained that the stellarator alteration will allow engineers to both test plasma confinement ideas and build new devices far more easily than before.

Atop the promising design alterations, MUSE reportedly manages what’s known as “quasisymmetry” better than any previous stellarator—more specifically, a subtype called “quasiaxisymmetry.”

In extremely simplified terms, quasisymmetry is when a magnetic field’s shape inside a stellarator isn’t the same as the field around the stellarator’s physical shape. Nevertheless, the overall magnetic field strength remains uniform, thus effectively confining plasma and increasing the chances for fusion reactions. According to Zarnstorff, MUSE pulls off its quasisymmetry “at least 100 times better than any existing stellarator.”

From here, the researchers intend to further investigate the nature of MUSE’s quasisymmetry, while also precisely mapping its magnetic fields—all factors influence the odds of achieving stable, net positive fusion reactions.

Whether or not scientists will discover the breakthroughs necessary to make green fusion energy a reality anytime soon remains to be seen. But thanks to some creative problem-solving using what are ostensibly very heavy duty fridge magnets, the long-overlooked stellarator could prove a valuable tool.

The post Stellarator fusion reactor gets new life thanks to a creative magnet workaround appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The best solar generators for 2024, tested and reviewed https://www.popsci.com/reviews/best-solar-generators/ Wed, 26 Jan 2022 18:00:00 +0000 https://www.popsci.com/?p=421868
The best solar generators including Jackery 2000 Pro, Anker 767 and the EcoFlow
Stan Horaczek

Tap the power of the sun to meet your power needs wherever you may roam.

The post The best solar generators for 2024, tested and reviewed appeared first on Popular Science.

]]>
The best solar generators including Jackery 2000 Pro, Anker 767 and the EcoFlow
Stan Horaczek

We may earn revenue from the products available on this page and participate in affiliate programs. Learn more ›

Best overall Jackery 2000 Plus front panel close-up Jackery Explorer 2000 Plus
SEE IT

This is a solid all-around mix of features and affordability.

Best for camping Goal Zero Yeti 1000 Core Portable Generator Review Goal Zero Yeti 1000 Core
SEE IT

This powerful pack is easy to transport to a site.

Best for homes EcoFlow Delta Pro portable generator review EcoFlow Delta Pro
SEE IT

This is the pick if you need lots of scalable capacity.

You don’t want to wait until you need a solar generator to buy one. Whether you’re trying to live the van life, prepare for emergencies, or just bring some creature comforts with you when you go camping. Whatever the case, few things are as useful in today’s tech-driven world as a source of reliable, renewable power. The best solar generators can reliably and sustainably meet various energy needs, and we have tested and compared the best models to find which one fits your needs.

How we chose the best solar generators

As an avid outdoorsman, I’ve had the opportunity to test an extremely wide range of outdoor gear, including mobile and off-grid electrification equipment like solar-powered generators, as well as inverter and dual-fuel generators. These became particularly essential when the pandemic forced my travels to become domestic rather than international, which prompted me to outfit a van for long-term road-tripping

To bring my work along for the ride, I needed a constant power source to charge my laptop, a portable fridge, lighting, and a myriad of devices and tools … even the best electric bikes. As a result, I’ve tried all the leading portable power stations (and plenty that aren’t leading, too), so I know precisely what separates the best from the blah. I’ve written all about it (and other outdoor tech) for publications, including the Daily Beast, Thrillist, the Manual, and more. There were cases when my own opinion resulted in a tie, and I, therefore, looked to reviews from actual customers to determine which solar generators delivered the most satisfaction to the most users.

The best solar generators: Reviews & Recommendations

The solar generators on this list span a wide range of budgets, from a few hundred dollars to a few thousand. They span several use cases, from camping to a backup for your home. Only you know all the factors that make one of these the best solar generator for you, but we think that one of these will get the job done.

Best overall: Jackery Explorer 2000 Plus

Stan Horaczek

SEE IT

Why it made the cut: It offers just about everything from our previous best overall pick with the added benefits of LiFePO4 battery power.

Specs

  • Storage capacity: 2,042.8Wh (expandable up to 24,000Wh)
  • Output capacity: 6,000w
  • Dimensions: 18.6 x 14.7 x 14.1 inches
  • Weight: 61 pounds
  • Price: $2,199

Pros

  • Charges quickly
  • Very high output that can run power-hungry devices
  • Built-in wheels and handle
  • Clear display
  • Four AC outlets
  • Expandable with extra batteries
  • Long life batteries

Cons

  • Heavy
  • Slightly less capacity than our previous pick

As new solar generators hit the market, many come toting new lithium iron phosphate (LiFePO4) batteries instead of the familiar lithium-ion batteries that came before. LiFePO4 offers a few advantages, including a much longer lifespan as you charge and discharge them. They’re also safer and often faster to charge. They do typically add some weight, however. Just about all of those modifiers apply here in the form of the Jackery Explorer 2000 Plus.

The Jackery Explorer 2000 Plus can power current-hungry devices at up to 6000w, so even if you want to power a welder, you can. The battery will only last you about a half hour doing this (we tried it), but it does work, and that’s more than many other models can say. I also got to test the Explorer 2000 Plus during a real power outage. It kept our router running for several hours to maintain connectivity.

This model has 2kWh of storage built-in, but you can expand that capacity with extra external daisy-chained batteries. It gives a total max storage of up to 24kWh—enough for a serious off-grid job. The optional solar panels charge the battery quickly and efficiently. Jackery claims roughly two hours of charging time via the optional solar panels, and I found it took more like 2.5 hours, but that includes battling some passing clouds. With two straight hours of direct sun, it could likely get the job done.

A look at the Jackery 2000 Plus solar generator with its handle extended
The Jackery Explorer 2000 Plus handle and integrated wheels make it considerably easier to move around. Stan Horaczek

At 61 pounds, this is considerably heavier than the Jackery Explorer 2000 Pro, which weighs nearly 20 pounds less. But, the integrated wheels, handle, and chunky grips to either side of the box make it very easy to lug around. Everyone in my family could easily set it in the back of my wife’s Honda Civic.

The switch to LiFePo4 also means that this unit will last a long time before the battery degrades beyond its usable range. The company claims it will take 4,000 cycles before the battery life degrades to 70 percent. We obviously haven’t had time to test that yet, but that is the nature of LiFePo4, so it will almost certainly last longer than a lithium-ion model at least.

Still great: Jackery Explorer 2000 Pro

Nick Hilden

SEE IT

Buy it used or refurbished: eBay

Why it made the cut: This Jackery solar generator delivers the best blend of capacity, input/output capability, portability, and durability.

Specs

  • Storage capacity: 2,160Wh
  • Input capacity: 1,200W
  • Output capacity: 2,200W (4,400W surge)
  • Dimensions: 15.1 x 10.5 x 12.1 inches
  • Weight: 43 lbs
  • Price: $2,498

Pros

  • Fast charging and outstanding capacity
  • Durable and easy to use
  • Plenty of ports
  • Can connect to six 200W solar panels

Cons

  • Heavy for its size

The biggest portable power station from Jackery, a leading solar generator manufacturer, the Explorer 2000 Pro offers a tremendous 2,160 watt-hours of power, making it capable of charging a full camping setup for a few days. When plugged into six 200W solar panels, an upgrade over the four-panel setup available on the Jackery Explorer 1500, you can fully charge this portable power station in just 2-2.5 hours. That’s less than half the time of the smaller model.

On top of all that, it’s extremely user-friendly. Numerous output ports ensure that you can plug in a wide range of devices and electrical equipment. Its functions are highly intuitive, and the digital display is easy to understand. Like other Jackery generators, it’s incredibly durable, too. The one potential downside is its weight: At 43 pounds, it’s a bit heavy for its size. Even so, for all the power you can store, and the rapid-charging time, the Jackery Explorer 2000 Pro will keep the lights on wherever you need power.

For more on the Jackery Explorer 2000 Pro, check out our full review.

Best high-capacity: Jackery Explorer 3000 Pro

Nick Hilden

SEE IT

Specs

  • Storage capacity: 3,024Wh
  • Output capacity: 3,000W
  • Dimensions: 18.6 x 14.1 x 14.7 inches
  • Weight: 63.9 pounds
  • Price: $2,799

Pros

  • Ample power storage for long trips or outages
  • Sturdy handles and wheels make it easy to move
  • Smooth design makes it easy to load and unload
  • High peak output for power-intensive tasks
  • Lots of ports for connectivity

Cons

  • 200W solar panels can be klunky
  • Relatively pricey

This is the big sibling to our best overall pick. Inside the Jackery Explorer 3000 Pro, you’ll find 3,024Wh of power storage, which is enough to power even large devices for extended periods of time. It can charge a high-end smartphone more than 100 times on a single charge. It can also power full-on appliances in an RV or emergency situation.

Despite its large capacity, we learned firsthand that the Jackery Explorer 3000 Pro is relatively easy to move around. Sturdy handles molded into its case make it easy to pick up, while an extending handle and wheels make it easy to roll around at the campsite or any other location.

It can charge in less than three hours from a standard outlet or, under optimal conditions with the 200W solar panels, it can fill up as quickly as eight hours. That full solar array can get large and unwieldy, but a smaller setup can still provide ample charging if you don’t need to max out the capacity daily.

This portable power station offers the best of everything we loved about the Explorer 2000 Pro, there’s just more of it. When you’re living the van life, powering an RV, or trying to ride out a power outage, more is definitely better if you can justify the extra cost.

Best for frequent use: Anker 767 Portable Power Station Solar Generator

Stan Horaczek

SEE IT

Why it made the cut: High capacity and fast charging make this long-lasting battery a solid everyday driver.

Specs

  • Storage capacity: 2,048Wh
  • Output capacity: 2,400W
  • Dimensions: 20.67 x 9.84 x 15.55 inches
  • Weight: 67.3 pounds
  • Price: $1,999

Pros

  • Charges up to 80% in less than two hours
  • Solid output and storage capacity
  • Optional battery pack doubles capacity
  • LiFePO4 batteries survive more charge cycles than traditional models
  • Plenty of ports
  • Built-in handle and wheels for transport

Cons

  • Heavy for its capacity
  • No USB-C in for charging

Anker has equipped its massive portable power station with LiFePO4 batteries, which stand up much better to repeat charging and discharging over the long term than common lithium-ion cells. Anker claims it can charge and discharge up to 3,000 times before it reaches 80% battery health compared to 500 in a similar lithium-ion setup. While I haven’t had the chance to run it through 3,000 cycles, LiFePO4 batteries have a well-earned reputation for longevity. 

Regarding overall performance, the Anker 767 does everything you’d want a unit with these specs to do. The bad weather has given me [Executive Gear Editor Stan Horaczek] ample chances, unfortunately, to test it in real-world situations. 

The built-in battery offers a 2048Wh capacity and pumps out up to 2,400W. It does so through four standard AC outlets, an RV outlet, two 120W car outlets, two 12W USB-A ports, and three 100W USB-C ports. 

I used it during a blackout to keep our Wi-Fi running while charging my family’s devices. Filling a phone from zero barely makes a dent in the power station’s capacity, and it ran the router for several hours with plenty of juice left. 

In another instance, it powered our small meat freezer for four hours before the power came back on with some juice still left in the tank. It does what it promises. 

There are a few nice extra touches as well. Built-in wheels and an extendable handle allow it to roll like carry-on luggage. Unfortunately, those are necessary inclusions because it weighs a hefty 67.3 pounds. It’s manageable but definitely heavy compared to its competition. 

The Anker 767 is compatible with the company’s 200W solar panels, which fold up for easy transportation. I mostly charged the unit through my home’s AC power, a surprisingly quick process. The 767 Portable Power Station can go from flat to more than 80% charge in less than a half hour with sufficient power. It takes about two hours to get it fully juiced. 

Anker also offers a mobile app that connects to the power station via Bluetooth if you want to control it without actually going over and touching it.

Best for camping: Goal Zero Yeti 1000 Core

Nick Hilden

SEE IT

Buy it used or refurbished: eBay

Why it made the cut: Thanks to its outstanding portability, high storage capacity, and Yeti’s famous durability, the Goal Zero Yeti 1000 Core is great for packing along for camping or van-living. 

Specs

  • Storage capacity: 983Wh
  • Input capacity: 600W
  • Output capacity: 1,200W (2,400W surge)
  • Dimensions: 9.86 x 15.25 x 10.23 inches
  • Weight: 31.68 lbs
  • Price: $1,198.95

Pros

  • Highly portable
  • Incredible durability
  • Rapid recharge rate
  • Plenty of plugs

Cons

  • Expensive for its size/capacity

Yeti is long-renowned for making some of the best outdoor gear money can buy, so when the company launched its Goal Zero line of solar generators, it was no surprise that they turned out to be awesome. While the whole line is great, the 1000 Core model’s balance between capacity and portability makes it perfect for taking on the road and going camping.

While the 1000 Core has a third less capacity than our top pick, it charges up faster, making it a great option for rapid solar replenishment. That said, its capacity is no slouch, offering 82 phone charges, 20 for a laptop, or upwards of 15 hours for a portable fridge (depending on wattage). Suffice to say, it’s more than capable of powering your basic camping gear.

Beyond its charging capabilities, the Goal Zero 1000 Core excels at camping thanks to its hearty build quality. Built super tough—like pretty much everything Yeti makes—its exterior shell provides solid protection.

The biggest issue it presents is the cost. Like pretty much everything Yeti produces, its price tag isn’t small. While there are other 1000-level solar generators for less, this one offers a great balance of power storage and portability.

For more on the Goal Zero Yeti 1000 Core, check out our full review.

Best for off-grid living: Bluetti AC200 Max

Bluetti

SEE IT

Buy it used or refurbished: eBay

Why it made the cut: Thanks to its high solo capacity and ability to daisy-chain with additional batteries, the Bluetti AC200 Max is perfect for bringing power off the grid.

Specs

  • Storage capacity: 2,048Wh standalone, expandable up to 8,192Wh
  • Input capacity: 1,400W
  • Output capacity: 2,200W (4,800W surge)
  • Dimensions: 16.5 x 11 x 15.2 inches
  • Weight: 61.9 lbs
  • Price: $1,999

Pros

  • Massive capacity
  • Daisy-chain capability
  • Lightning-fast input capacity
  • 30A RV plug and two wireless charging pads
  • Surprisingly affordable for what it offers

Cons

  • Pretty heavy
  • Fan can get loud, especially in hot weather

You’ll be hard-pressed to find a solar generator better suited for living off the grid for an extended period than the Bluetti AC200 Max. It boasts a substantial 2,048Wh capacity, allowing you to power your whole life off it longer than most portable generators. Even better, you can daisy-chain multiple Bluetti batteries, expanding its capacity to a massive 8.192Wh. That’s flat-out enormous and translates into the ability to power a full-sized fridge for over a day or several hours of air conditioning. For the more modest needs of people who are used to living off a generator, it will last for a very long time.

At the same time, the AC200 Max has an outstanding input capacity of 1,400W. That means you can plug in a pretty hefty array of solar panels to replenish its stores quickly. This allows you to keep your off-grid setup going with little to no interruption. It also features some specialty charging options, including a 30A plug, which lets you plug it directly into an RV, and multiple wireless charging pads for smaller devices.

Fastest charging: EcoFlow Delta 2 Max

Stan Horaczek

SEE IT

Why it made the cut: Whether it’s solar or AC power, you can get 80% of a charge in an hour or less.

Specs

  • Storage capacity: 2048Wh (expandable to 6,000Wh)
  • Output capacity: 3,400W
  • Dimensions: 19.8 x 9.5 x 12.01
  • Weight: 50.71 lbs
  • Price: $2,000

Pros

  • Very fast charging over solar or mains
  • Relatively compact
  • Not as heavy as we might have expected
  • Long-lasting batteries
  • Scalable by connecting two extra batteries
  • Advanced temperature management for safety

Cons

  • Solar panels are pricy
  • Still heavier than non-LiFePo4 models

Plug this 2048Wh battery pack into up to 1,000 watts of solar panels, and you can get an 80 percent charge in just 43 minutes. That’s blisteringly fast compared to other models. Plug the unit into the wall and you’ll go from zero to 80 percent in just 1.1 hours, which is still fairly speedy when it comes to soaking up electricity. That extra time can make a huge difference if you only have limited opportunities to top off your solar generator. We managed to get above 80 percent in just under an hour without perfect sun conditions here in Upstate New York.

In addition to its quick charging skills, the EcoFlow Delta 2 Max offers an impressive array of connectivity, including six AC outlets, which is more than many larger models offer. That’s good if you want to run many devices or chargers simultaneously. If you need more capacity, you can add two extra external batteries to give it a total storage of 6Wh.

At 51 pounds, this isn’t the lightest solar generator in its category, but like the other EcoFlow generators, it has chunky handles on top that make it easy to lug around. Everyone in my family could easily get it in and out of the back of our Honda CR-V without issue. Though, it doesn’t have wheels, so you will have to actually carry it around or put it on a cart.

Ultimately, this feels like a very high-end device. The fast charging is wonderful. The display is clear and relatively bright (though it could be brighter). And it offers a wide array of connectivity.

Best for homes: EcoFlow Delta Pro

Nick Hilden

SEE IT

Buy it used or refurbished: eBay

Why it made the cut: The EcoFlow Delta Pro delivers the standalone and expandable power capacity necessary to power your entire home.

Specs

  • Storage capacity: 3,600Wh standalone, expandable up to 25,000Wh
  • Input capacity: 6,500W
  • Output capacity: 3,600W (7,200W surge)
  • Dimensions: 25 x 11.2 x 16.4 inches
  • Weight: 99 lbs
  • Price: $3,699

Pros

  • Enormous capacity
  • Daisy-chain capability
  • 30A RV plug
  • Lightning-fast input capacity
  • Wi-Fi and Smartphone connectivity

Cons

  • Very heavy
  • Expensive

If you’re looking for the best solar generator for home backup in the event of a power outage, the EcoFlow Delta Pro stands apart from the pack, thanks to an unrivaled power and output capacity. The Delta Pro alone packs a 3,600Wh wallop, and you can expand that to 25,000Wh by chaining it to extra EcoFlow batteries and generators. That’s a ton of power and it has the substantial output capacity necessary to power an entire house worth of electronics when you need it to.

The Delta Pro also offers a companion app for iOS and Android that allows you to monitor energy usage, customize its operation, and monitor and manage a number of other elements.

While it’s not overly large for what it does, the Delta Pro is a heavy piece of equipment. It has wheels, so it is technically portable, but this is meant to be put down in a home or other semi-permanent site. Given its size and power, it’s also a much more expensive device, especially if you’re springing for the add-ons. As the best solar power generator to provide backup power for your entire home, however, it’s worth every penny. 

Best budget: Jackery Explorer 300

Stan Horaczek

SEE IT

Buy it used or refurbished: Amazon

Why it made the cut: With its reasonable capacity, compact size, and solid build quality at a low price, the Jackery Explorer 300 is a great budget pick.

Specs

  • Storage capacity: 293Wh
  • Input capacity: 90W
  • Output capacity: 300W (500W surge)
  • Dimensions: 9.1 x 5.2 x 7.8 in
  • Weight: 7.1 lbs
  • Price: $250

Pros

  • Affordable
  • Durable
  • Portable
  • Reasonable capacity

Cons

  • No flashlight
  • Slower input capacity

Though it isn’t quite as impressive as our top picks for best overall and best high-capacity, Jackery’s smaller Explorer 300 solar generator is super compact and lightweight with a decent power capacity for its price. Less a mobile power station than an upscale power bank, the 7-pound Jackery Explorer 300 provides plenty of portable recharges for your devices when you’re camping, on a job site, driving, or just need some power and don’t have convenient access to an outlet. Its modest 293Wh capacity isn’t huge, but it’s enough to provide 31 phone charges, 15 for a camera, 6 for the average drone, 2.5 for a laptop, or a few hours of operation for a minifridge or TV. A built-in flashlight would have upped its camping game somewhat, but at $300 (and often considerably less if you catch it discounted), this highly portable little power station does a lot for a little.

We tested this portable power station for several months, and it came in handy numerous times, especially during the winter when power outages abound. At one point, we had it powering two phones, a MacBook, and a small light.

The built-in handle makes it very easy to lug around. It feels like carrying a lunch box. The screen is easy to read, and the whole package seems fairly durable. Our review unit hasn’t taken any dramatic tumbles yet, but it has gotten banged around in car trunks, duffle bags, and other less-than-luxurious accommodations with no issues. If you catch one of these on sale, get it and stick it in a cabinet. You’ll be extremely glad to have it around when the need arises.

What to consider before buying the best solar generators

Over the past few years, solar generators have exploded onto the market. There are now dozens of different brands that largely look more or less the same at a glance. The fact is there are only a few standouts amidst a sea of knockoffs. Here’s what to look for to ensure you’re getting a great one:

How much power can it store?

A portable solar generator comes in an extremely wide range of sizes, but a generator’s size doesn’t automatically make it capable of storing a lot of power. In fact, most are disappointingly limited and unable to store much more juice than a portable charger.

To properly check a generator’s storage, you must look at its capacity, measured in watt-hours (Wh). One watt-hour is the equivalent of 1 watt flowing over the course of an hour. The best solar generators offer capacities of several hundred and sometimes several thousand watt-hours. That doesn’t mean, however, that it will provide power for several hundred or several thousand hours. Any generator will ultimately last a different amount of time, depending on what’s plugged into it.

It’s easy to predict how long a generator will last when you use it to power one thing. For example, if you were to power a 100-watt bulb using a power station with a capacity of 500 watt-hours, it would stay lit for five continuous hours. Add a portable fridge that requires 50 watts per hour, your phone which uses 18, a mini-fan that uses three … you get the picture. The more capacity, the better.

Charging capability

No solar generator will hold a charge forever, so you want one capable of charging as quickly and easily as possible. This is where we put the “renewable” into “renewable energy.”

All of the power stations included in this roundup can be charged by connecting them to solar panels (hence the designation “solar generators”). Still, you also want to look for the ability to charge via other sources like wall outlets and your vehicle’s 12-volt plug. This ensures that you can charge up whether you’re off-grid in the sun, plugged in while preparing at home, or using your dash socket on the go.

You must also monitor a model’s charging input capacity, measured in watts (W). For example, a solar-powered generator with a max input of 100W can take in a continuous flow of up to 100 watts, which is about the minimum that you’ll reasonably want to look for. Most of the generators below have input capacities of at least a few hundred watts when charging via solar, so a few 50- to 200-watt solar panels will max them out.

Output capability

Solar generators need to keep the power coming in and going out. The best solar generators can simultaneously charge all your intended devices via whatever plugs are necessary.

Any portable power station worth your money will have a high output capacity so you can charge many devices, even if they require a lot of juice. A generator’s maximum output should be much higher than its max input. While a particular model might only be capable of taking in a few hundred watts at any given moment, it will usually put out exponentially more. At a minimum, you’ll want a generator that can put out 300 watts at a time, though you’ll want at least 500 for larger tasks.

The best solar generators should also offer a variety of output plugs, including AC outlets, USB-A, USB-C, and even 12-volt DC outlets like the one in your vehicle dash. This ensures you can charge several devices simultaneously regardless of their plug. The number of ports you’ll need will vary depending on how many devices you need to power, but it should have at least a couple of AC outlets and a few USB-A ports.

Portability

While portable battery sources have been around for a while now, over the past several decades, they’ve been pretty heavy, unwieldy things. One of the most exciting aspects of the latest generation of solar generators is that they’ve become much more physically compact. 

Suppose you plan on taking a generator camping or working it into a van conversion where every square inch matters; well, size and weight become major considerations. All of the products we’ve recommended are about the size of one or two shoeboxes—three at the most. The lightest is about the weight of a 24-pack of soda, while the heaviest is 100 pounds. Most fall somewhere between 30-60 pounds.

If you’re using your generator as a more or less stationary source of backup power at home, portability isn’t a huge issue. Still, we generally recommend keeping weight and size in mind; You never know when you’ll need it for something other than a backup. (Plus, who wants to lug around something heavy and awkward if they don’t have to?) 

Another consideration regarding portability involves the necessity for accessories, which can impact how easy it is to move and use your generator. Some generators, for example, require a lot of removable battery packs, which can be a hassle when you’re on the go or packing a vehicle. All of the inclusions on our list require some accessories—you can’t get solar power without connecting cables and solar panels—but they work well with minimal add-ons.

Durability

As with any product you expect to last, durability and all-around quality craftsmanship are essential. This is especially true if you plan on lugging your generator around on camping and road trips. Many subpar power stations are made from cheap components and flimsy plastic that doesn’t feel like it will hold up under the rigors of the road.

Durability isn’t something you can determine by reading a spec sheet off the internet. You’ve actually got to take the generator out, use it a bunch, and see how it holds up. I’ve verified the durability of these recommendations via a combination of my own actual field tests and reviews culled from countless real product owners.

Related: Best electric generators

FAQs

Q: What size solar generator should I get?

It’s easy to underestimate how much capacity you need. A 1,000 watt-hours might sound like a lot, but if you’re going to power a converted van with a portable fridge, lights, and occasional phone and laptop top-off, that 1,000 watt-hours will go faster than you expect. I used a setup like this and know from personal experience that you should always overestimate how much power you’ll need.

A generator with a capacity under 1,000Wh can keep electronics charged. A larger one with 1000-1500Wh should be the minimum for road trips where you’ll need it to last multiple days between full charges. For a house or worksite where you expect to use some serious energy—like a full-sized refrigerator or power tools—you’re going to want to start looking at the biggest possible power stations that can be daisy-chained to external batteries.

If you want to get precise, there is an equation:

1. Estimate how many hours you’ll need to power various devices. For example, if you want to power two light bulbs for 2 hours: you need 4 hours of operation.

2. Add up the total wattage necessary: the two bulbs are 60 watts each, so you need 120 watts.

3. Multiply these together to find the total watt-hours needed: 4 x 120 = 480. So, in this case, you’d need at least a 500Wh solar generator. 

That might sound like a lot for two lightbulbs, but remember that, in most situations, you won’t really be powering 60-watt light bulbs for hours on end. You’ll be charging phones and laptops for an hour here or there, cooling a fridge that kicks on and off every once in a while, using power tools in short bursts, and whatnot.

Q: How many years will a solar generator last?

Most modern generators are rated to last upwards of 25 years. The best-designed power stations are pretty sturdy, with few to no moving parts, so they should likely keep kicking for a long time, provided that you care for them properly. I’ve been pretty rough with a few of mine, and they show no signs of stopping.

Q: Can I run my house on solar power only?

Yes and no. While it’s absolutely possible to power your house with solar power, you’re unlikely to do so with a portable solar generator unless you use several at once while limiting your power usage. The largest of our recommendations—the EcoFlow Delta Pro—will come fairly close when bolstered with extra batteries. If the power goes out, you’ll be able to keep your fridge cold and use basic electronics for a couple of days without recharging. With quality solar panels, good sunlight, and smart energy usage, your power should theoretically go uninterrupted.

Final thoughts on the best solar generators

We’re living in a “golden age” for portable solar generators. When I was a kid, and my family was playing around with solar gear while camping in the ‘90s, the technology couldn’t charge many devices, so it wasn’t all that practical. 

By contrast, the solar generators we’ve recommended here are incredibly useful. I’ve relied on them to power my work and day-to-day needs while road-tripping nationwide. They’re also great when the power goes out. When a windstorm cut the power at my house for a couple of days, I was still working, watching my stories, and keeping the lights on. 

We haven’t even scratched the surface in terms of the potential offered by portable, reliable, renewable, relatively affordable power. What we can do now is already incredible. The potential for what may come next, though, is truly mind-blowing.

Why trust us

Popular Science started writing about technology more than 150 years ago. There was no such thing as “gadget writing” when we published our first issue in 1872, but if there was, our mission to demystify the world of innovation for everyday readers means we would have been all over it. Here in the present, PopSci is fully committed to helping readers navigate the increasingly intimidating array of devices on the market right now.

Our writers and editors have combined decades of experience covering and reviewing consumer electronics. We each have our own obsessive specialties—from high-end audio to video games to cameras and beyond—but when we’re reviewing devices outside of our immediate wheelhouses, we do our best to seek out trustworthy voices and opinions to help guide people to the very best recommendations. We know we don’t know everything, but we’re excited to live through the analysis paralysis that internet shopping can spur so readers don’t have to.

The post The best solar generators for 2024, tested and reviewed appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
AI companies eye fossil fuels to meet booming energy demand https://www.popsci.com/technology/ai-power/ Mon, 25 Mar 2024 18:00:00 +0000 https://www.popsci.com/?p=607864
data center dark hallway green shade fluorescent light
Energy-intensive data centers were responsible for an estimated 4% of the US’ overall energy use in 2022, according to the International Energy Agency. DepositPhotos

Recent reports suggest renewable energy sources alone won’t be enough to meet data centers' increasingly intensive power needs.

The post AI companies eye fossil fuels to meet booming energy demand appeared first on Popular Science.

]]>
data center dark hallway green shade fluorescent light
Energy-intensive data centers were responsible for an estimated 4% of the US’ overall energy use in 2022, according to the International Energy Agency. DepositPhotos

It takes massive amounts of energy to power the data center brains of popular artificial intelligence models. That demand is only growing. In 2024, many of Silicon Valley’s largest tech giants and hoards of budding, well-funded startups have (very publically) aligned themselves with climate action–awash with PR about their sustainability goals, their carbon neutral pledges, and their promises to prioritize recycled materials. But as AI’s intensive energy demands become more apparent, it seems like many of those supposed green priorities could be jeopardized. 

A March International Energy Agency forecast estimates input-hungry AI models and cryptocurrency mining combined could cause data centers worldwide to double their energy use in just two years. Recent reports suggest tech leaders interested in staying relevant in the booming AI race may consider turning to old-fashioned, carbon-emitting energy sources to help meet that demand. 

AI models need more energy to power data centers 

Though precise figures measuring AI’s energy consumption remain a matter of debate, it’s increasingly clear complex data centers required to train and power those systems are energy-intensive. A recently released peer reviewed data analysis, energy demands from AI servers in 2027 could be on par with those of Argentina, the Netherlands, or Sweden combined. Production of new data centers isn’t slowing down either. Just last week, Washington Square Journal reports, Amazon Web Service Vice President of Engineering Bill Vass told an audience at an energy industry event in Texas he believes a new data center is being built every three days. Other energy industry leaders speaking at the event, like Former U.S. Energy Secretary Ernest Moniz, argued renewable energy production may fall short of what is  needed to power this projected data center growth. 

“We’re not going to build 100 gigawatts of new renewables in a few years,” Moniz said. The Obama-era energy secretary went on to say unmet energy demands brought on by AI, primarily via electricity, would require tapping into more natural gas and coal power plants. When it comes to meeting energy demands with renewables, he said, “you’re kind of stuck.” 

Others, like Dominion Energy CEO Robert Blue say the increased energy demand has led them to build out a new gas power plant while also trying to meet a 2050 net-zero goal. Other natural gas company executives speaking with the Journal, meanwhile claim tech firms building out data setters have expressed interest in using a natural gas energy source. 

Tech companies already have a checkered record on sustainability promises

A sudden reinterest in non-renewable energy sources to fuel an AI boom could contradict net zero carbon timelines and sustainability pledges made by major tech companies in recent years. Microsoft and Google, who are locked in a battle over quickly evolving generative AI tools like ChatGPT and Gemini, have both outlined plans to have net negative emissions in coming years. Apple, which reportedly shuttered its long-running car unit in order to devote resources towards AI, aims to become carbon neutral across its global supply chains by 2030. The Biden administration meanwhile has ambitiously pledged the US to have a carbon pollution free electricity sector by 2035.  

[ Related: Dozens of companies with ‘net-zero’ goals just got called out for greenwashing ]

Critics argue some of these climate pledges, particularly those heralded by large tech firms, may seem impressive on paper but have already fallen short in key areas. Multiple independent monitors in recent years have criticized large tech companies for allegedly failing to properly disclose their greenhouse gas emissions. Others have dinged tech firms for heavily basing their sustainability strategies around carbon offsets as opposed to potentially more effective solutions like reducing energy consumption. The alluring race for AI dominance risks stretching those already strained goals even further. 

AI boom has led to new data centers popping up around the US

Appetites for electricity are rising around the country. In Georgia, according to a recent Washington Post report, expected energy production within the state in the next ten years is 17 times larger than what it was recently. Northern Virginia, according to the same report, could require the energy equivalent of several nuclear power plants to meet the increased demand from planned data centers currently under construction. New data centers have popped up in both of those states in recent years. Lobbyists representing traditional coal and gas energy providers, the Post claims, are simultaneously urging government offices to delay retiring some fossil fuel plants in order to meet increasing energy demands. Data centers in the US alone were responsible for 4% of the county’s overall energy use in 2022 according to the IEA. That figure will only grow as more and more AI-focused facilities come online. 

At the same time, some of the AI industry’s-starkest proponents have argued these very same energy intensive models may prove instrumental in helping scale-up renewable energy sources and develop technologies to counteract the most destructive aspects of climate change. Previous reports argue powerful AI models could improve the efficiency of oils and gas facilities by improving underground mapping. AI simulation modes, similarly could help engineers develop optimal designs for wind or solar plants that could bring down their cost and increase their desirability as an energy source. Microsoft, who partners with OpenAI, is reportedly already using generative AI tools to try and streamline the regulatory approval process for nuclear reactors. Those future reactors, in theory, would then be used to generate the electricity needed to quench its AI models’ energy thirst. 

Fossil-fuel powered AI prioritizes long-term optimism over current day climate realities 

The problem with those more optimistic outlooks is that they remain, for the time being at least, mostly hypothetical and severely lacking in real-word data. AI models may increase the efficiency and affordability of renewable resources long term, but they risk doing so by pushing down on the accelerator of non-renewable resources right now. And with energy demands surging in other industries outside of tech at the same time, these optimistic longer-term outlooks could serve to justify splurging on natural gas and goal in the short term. Underpinning all of this is a worsening climate outlook that the overwhelming majority of climate scientists and international organizations agree demands radical action to reduce emissions as soon as possible. Renewable energy sources are on the rise in the US but tech firms looking for easier available sources of electricity to power their next AI projects risk setting back that progress. 

The post AI companies eye fossil fuels to meet booming energy demand appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
EPA says over half of all new cars must be EVs or hybrids by 2032 https://www.popsci.com/environment/epa-car-pollution-standards/ Wed, 20 Mar 2024 17:30:00 +0000 https://www.popsci.com/?p=607265
High traffic road with signs and light trails on sunset
Transportation pollution is the single largest greenhouse gas contributor in the US. Deposit Photos

The Biden Administration’s new policies are the strictest auto pollution regulations yet.

The post EPA says over half of all new cars must be EVs or hybrids by 2032 appeared first on Popular Science.

]]>
High traffic road with signs and light trails on sunset
Transportation pollution is the single largest greenhouse gas contributor in the US. Deposit Photos

The Biden administration has announced some of the biggest pollution regulations in US history. On Wednesday, the Environmental Protection Agency revealeded the finalization of new, enforceable standards meant to ensure electric and hybrid vehicles make up at least 56 percent of all passenger car and light truck sales by 2032.

To meet this goal, automotive manufacturers will face increasing tailpipe pollution limits over the next few years. This gradual shift essentially means over half of all car companies’ sales will need to be zero-emission models to meet the new federal benchmarks.

According to the EPA, this unprecedented industry transition could cut an estimated 7 billion tons of emissions over the next three decades. Regulators believe this will also offer a nearly $100 billion in annual net benefits for the nation, including $13 billion of annual public health benefits from improved air quality alongside $62 billion in reduced annual fuel, maintenance, and repair costs for everyday drivers.

[Related: EPA rule finally bans the most common form of asbestos.]

Transportation annually generates 29 percent of all US carbon emissions, making it the country’s largest single climate change contributor. Aggressively pursuing a nationwide shift towards EV adoption was a cornerstone of Biden’s 2020 presidential campaign platform. While in office, Donald Trump rolled back the Obama administration’s previous automotive pollution standards applicable to vehicles manufactured through 2025. He has promised to enact similar orders if re-elected during this year’s presidential election.

The EPA’s new standards is actually a slightly relaxed version of a previous proposal put forth last year. To address concerns of both manufacturers and the industry’s largest union, United Auto Workers, the Biden administration agreed to slow the rise of tailpipe standards over the next few years. By 2030, however, limits will increase substantially to make up for the lost time. The EPA claims today’s finalized policy will still reduce emissions by the same amount over the next three decades.

The new rules are by no means an “EPA car ban” on gas-powered vehicles, as lobbyists with the American Fuel & Petrochemical Manufacturers continue to falsely claim. The guidelines go into effect in 2027, and only pertain to new cars and light trucks over the coming years. The stipulations also cover companies’ entire product lines, so it’s up to manufacturers to determine how their fleets as a whole meet the EPA benchmarks.

Still, fossil fuel companies and Republican authorities are extremely likely to file legal challenges over today’s announcement—challenges that could easily arrive in front of the Supreme Court in the coming years. Earlier today, the vice president of federal policy for the League of Conservation Voters said during a press call that they already discussed such possibilities with the Biden administration, and “they are crystal clear about the importance of getting rules out to make sure that they withstand both legal challenges from the fossil fuel industry and any congressional attacks should Republicans take over the Senate and the White House.”

The post EPA says over half of all new cars must be EVs or hybrids by 2032 appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Huge 60-foot-tall buoy uses ocean waves to create clean energy https://www.popsci.com/technology/buoy-wave-generator/ Tue, 12 Mar 2024 14:20:00 +0000 https://www.popsci.com/?p=606198
CorPower C4 buoy turbine in ocean
The buoy shifts into a passive 'transparent' mode when the waters get too choppy. CorPower

CorPower’s C4 prototype just completed a successful six-month test run off the coast of Portugal. Here are the results.

The post Huge 60-foot-tall buoy uses ocean waves to create clean energy appeared first on Popular Science.

]]>
CorPower C4 buoy turbine in ocean
The buoy shifts into a passive 'transparent' mode when the waters get too choppy. CorPower

Giant buoys over 60-feet tall may one day generate clean energy to feed into local power grids—but making it a reality isn’t as simple as going with the ocean’s flow. To successfully keep the idea afloat, it’s all about timing.

Swedish company CorPower recently announced the completion of its first commercial scale buoy generator demonstration program off the coast of northern Portugal. Over the course of a six-month test run, CorPower’s three-story C4 Wave Energy Converter (WEC) endured four major Atlantic storms and adapted to constantly shifting wave heights. Although final analysis is still ongoing, CorPower believes the technology offers a promising new way to transition towards a sustainable future.

Global Warming photo

As New Atlas explains, the basic theory behind CorPower’s C4 is relatively straightforward. As its air-filled chassis bobs along the rolling waves, an internal system converts the up-and-down movement into rotational power for energy generation. At the same time, however, a tensioned, internal pneumatic cylinder reacts in real-time to wave phases—slightly delaying its movements behind the waves amplifies the buoy’s bobbing, thus creating even more energy production. According to CorPower, using this system can boost power generation as much as 300-percent.

But what about when the sea inevitably gets choppier, as was the case during storms that produced waves nearly as high as the C4 itself? When this happens, the pneumatic cylinder switches off its active control to allow the machine to enter “transparent” mode, during which time it simply rides out the adverse ocean conditions until it’s time to spring back into action. CorPower compares this “tuning and detuning” feature to similar systems in wind turbines, which adjust the pitch of their blades in response to surrounding weather conditions.

[Related: Huge underwater ‘kite’ turbine powered 1,000 homes in the Faroe Islands.]

CorPower says its team recorded as much as 600kW of peak power production during the C4 trial, although they believe it’s possible for the buoy’s current version to ramp that up to around 850kW. While that by itself isn’t much compared to a single offshore wind turbine’s multi-megawatt range, CorPower’s plan is to eventually deploy thousands of more efficient WEC machines to create a much more powerful generator network. If it can scale a farm up to produce 20 gigawatts of energy, it estimates the buoys could offer something between $33-$44 per megawatt-hour. That’s pretty attractive to investors, especially given C4’s aquatic power source operates virtually 24/7, unlike wind or solar generators.

Right now, however, 20 gigawatts would require over 20,000 buoys, so a more economical and efficient buoy system is definitely needed before anyone starts seeing fleets of these canary yellow contraptions floating out there on the open oceans. CorPower seems confident it can get there, and is next planning a new trial phase that will see multiple C4 buoys in action.

The post Huge 60-foot-tall buoy uses ocean waves to create clean energy appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Can EVs drive in National Radio Quiet Zone? https://www.popsci.com/technology/evs-national-radio-quiet-zone/ Thu, 07 Mar 2024 15:02:00 +0000 https://www.popsci.com/?p=605701
a large telescope sits in a green field next to a white barn in a rural setting
Green Bank Observatory

The only vehicles allowed near the Green Bank Telescope are diesel-powered.

The post Can EVs drive in National Radio Quiet Zone? appeared first on Popular Science.

]]>
a large telescope sits in a green field next to a white barn in a rural setting
Green Bank Observatory

The United States National Radio Quiet Zone (NRQZ) is a 13,000 square-mile rectangle covering the southernmost tip of Maryland’s western panhandle, the Allegheny Mountains in Eastern West Virginia, and the Blue Ridge Mountains in Central Virginia. The area exists to protect key government installations deep in the heart of the NRQZ from radio interference, including the Green Bank Observatory in Green Bank, West Virginia. The most severe restrictions exist within a 20-mile radius of the observatory and involve limitations on Wi-Fi and cellular service, and the prohibition of all but diesel-powered vehicles when approaching the observatory itself.

The world’s largest fully steerable radio telescope, the Robert C. Byrd Green Bank Telescope, operates at Green Bank and requires radio silence for its work. The telescope has found everything from a trio of millisecond pulsars from Messier 62 to the most massive neutron star yet discovered, PSR J0740+6620. Such findings are only possible due to the extreme sensitivity this and the other three radio telescopes at the observatory possess. But the drawbacks of these highly sensitive instruments are their ability to detect any radio transmission–from digital cameras, smartphones, or even the spark plugs of gasoline-powered vehicles. Thus, the restrictions imposed.

EVs in the NRQZ

Enter electric vehicles and the infrastructure needed to keep them going. For most parts of the NRQZ–which U.S. Interstates 81, 79 and 64 pass through–EV owners might not even realize they’re within this special part of the U.S. Would such vehicles face similar issues as gas-powered cars deep in the heart of this unique zone due to their electric motors emitting radio frequencies that would interfere with the work performed at the Green Bank Observatory?

“Electric vehicles are on campus,” said Jill Malusky, the news and information manager for the observatory. “Some of our staff have them. We have two charging stations on campus that the public can access. There are also some charging stations in the area. We have a bigger ski resort up here called the Snowshoe Ski Resort about a 45-minute drive [from Green Bank], and they have electric vehicle charging stations up there.”

Malusky adds that Green Bank isn’t as isolated as some reports would suggest; some 50,000 visitors visit the observatory each year to learn more about radio astronomy and the NRQZ. She says all vehicles are welcome onto the public areas of Green Bank Observatory, including EVs. But just like fully gas-powered vehicles, EVs, plug-in hybrids, and regular hybrids cannot approach the 1.5-mile radius surrounding the radio telescopes. The reason is that diesels do not emit as much radio interference as spark plugs and electric motors. Instead, visitors can hike or cycle one of the trails leading into the quietest part of the NRQZ, or board a diesel-powered bus.

However, there is one potential concern still on the ground: the day diesels are potentially phased out of production. As more and more manufacturers push to go fully electric, it may not be too long afterwards until the parts needed to keep the diesels at Green Bank going are harder to track down. What happens then?

“When we are doing maintenance, we tend to turn our biggest telescope off,” said Mulasky. “We already most of the time turn everything off, anyways; we can’t observe while maintenance is happening. So, we would just do it like that. We would just shift the way that we do maintenance, turn everything off, plan accordingly, and then get those electric vehicles out of the way when they’re done, turn everything back on.”

Who lives in the Quiet Zone?

Then, there’s Green Bank itself, a small census-designated community of 200–including many employees with the Green Bank Observatory–with a public library, a fire department and an elementary school. Mulasky says that many of the stories about the community and its relationship with modern technology is a complex tale.

“Hundreds of thousands of people live in the Quiet Zone and don’t realize it,” said Malusky, “because of the way the Quiet Zone works in those parts only really impacts industry. There’s cell phone service. There’s Wi-Fi. There’s every modern amenity you can think of. The only way we monitor the Quiet Zone is when a new cell phone tower or some sort of technology that’s being put up that’s really ‘loud’ or really powerful, we have engineers that work with them to make sure that it points away from our telescopes.

“There are still some local misunderstandings about what causes us to be so quiet or so cut-off,” said Mulasky. “It’s a mix of both, ‘We have this scientific facility that uses the National Radio Quiet Zone,’ and also that [Green Bank is] a very small, remote, rural, Appalachian town; we don’t have a lot of access to resources. We don’t have a lot of business or industry that would’ve come into the area to give us more.”

Mulasky says that most things on the ground don’t affect the observatory. Instead, it’s objects in the sky, like radio communications from satellites and airplanes, currently delivering the most impact upon the Green Bank Observatory. Thus, with help from the National Science Foundation, the observatory created the National Radio Dynamic Zone around two years ago to work with engineers of such skyborne communications to mitigate any complications that could come up between the telescopes and the overhead radio wavelengths, mainly by having the satellites and aircraft passing over briefly turn off their radios.

Mulasky adds that living in a world where everything is transmitting radio signals all of the time means innovating wherever possible, including software. The observatory’s software engineers are working on filters and programs that can see the interference caused by things like smartphones and smartwatches to filter it out.

“Radio astronomy not only involves what you think of as traditional scientists or even traditional technicians to do the physical work,” said Mulasky. “There’s also tons of software and programming that goes into it. For the past few years, our software teams have been trying to think of different sorts of ‘filters,’ or software programs they can use that can see the interference that’s caused by anything we’re talking about, and just filter it out. We don’t have that technology yet, but we know that it’s important. We’re working on it now, and I would say in 20 years, we’ll surely have that by then. A problem like [filtering radio interference] can’t take 20 years to solve.”

Perhaps by then, the NRQZ will be a quieter place with EVs traversing the roadways, the sound of wind and, now and again, the clatter of diesel engines breaking the silence.

The post Can EVs drive in National Radio Quiet Zone? appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Huge underwater ‘kite’ turbine powered 1,000 homes in the Faroe Islands https://www.popsci.com/environment/minesto-dragon-kite-turbine/ Tue, 13 Feb 2024 18:30:00 +0000 https://www.popsci.com/?p=602566
Minesto Dragon 4 undersea kite turbine traveling atop water
Kite turbines like the Dragon 4 and Dragon 12 could soon provide tidal power to nearby homes. Minesto

Minesto’s Dragon 12 can create 1.2 megawatts of power by swimming against the ocean currents.

The post Huge underwater ‘kite’ turbine powered 1,000 homes in the Faroe Islands appeared first on Popular Science.

]]>
Minesto Dragon 4 undersea kite turbine traveling atop water
Kite turbines like the Dragon 4 and Dragon 12 could soon provide tidal power to nearby homes. Minesto

It’s been over a decade since PopSci last checked in on Minesto’s underwater “kite” turbine technology. Since then, the Swedish green energy startup has made some big strides in their creative approach to generating clean electricity from swimming against the ocean currents. 

Last week, Minesto announced a major moment for their largest creation. A nearly 40-foot-wide, 30-ton, highlighter yellow Dragon 12 “tidal power plant” delivered its first 1.2 megawatts (MW) of energy to the Faroe Islands’ national grid. That’s enough power to sustain a small town of 1,000 homes.

[Related: Tidal turbines put a new spin on the power of the ocean.]

Although referred to as a “kite,” Dragon 12 arguably more resembles a biplane, and remains almost entirely below the ocean surface. Minesto’s video montage celebrating the inaugural voyage shows their tidal energy system leashed to a tugboat as it travels across an inland bay for installation.

Renewables photo

Once installed, the Dragon 12 uses an onboard control system to steer its rudders. This allows continuous travel along a predetermined, countercurrent figure-8 pattern faster than surrounding water to rotate its turbine. The resulting generated energy then transfers down a subsea cable tether and to an onshore power facility through an umbilical line installed on the ocean floor.

The idea behind tidal green energy plants isn’t new, but for years the underlying technology has proven cost prohibitive and logistically difficult. Other designs are frequently massive endeavors. Scotland-based Orbital Marine Power’s 232-feet-long O2 turbine “superstructure,” for example, weighs in at nearly 700 tons while generating about 4 MW of power—a little more than four-times what Dragon 12 accomplished this month. Both approaches likely have their uses, but Minesto’s latest milestone indicates smaller, more modular, interlocked options could soon become available to energy providers.

And linking up multiple Dragon turbines is exactly what Minesto hopes to do next. According to The Next Web, the company intends to partner with a local Faroe Islands utility company to construct a 120MW system comprising around 100 tidal kite turbines. If successful, such a project could provide as much as 40-percent of the island archipelago’s entire electricity needs.

For microgrid plans, Minesto also has a smaller sibling to the Dragon 12. Dubbed the Dragon 4, this kite turbine system can generate 100kW of energy, and at just 13 x 16 x 9ft, can fit inside a standard shipping container for easy transport.

The post Huge underwater ‘kite’ turbine powered 1,000 homes in the Faroe Islands appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Aging reactor sets new fusion energy record in last hurrah https://www.popsci.com/technology/jet-fusion-reactor-record/ Fri, 09 Feb 2024 20:00:00 +0000 https://www.popsci.com/?p=602165
Interior of JET fusion reactor with plasma superimposed
The historic nuclear fusion facility generated over 69 megajoules of energy in just 5 seconds. EUROfusion

The Joint European Torus (JET) facility retired after four decades of service, but not without achieving one final milestone.

The post Aging reactor sets new fusion energy record in last hurrah appeared first on Popular Science.

]]>
Interior of JET fusion reactor with plasma superimposed
The historic nuclear fusion facility generated over 69 megajoules of energy in just 5 seconds. EUROfusion

After 40 years of major nuclear fusion milestones, the Joint European Torus (JET) facility finally shut down in December 2023—but not without one final record shattering achievement. On Thursday, representatives for the groundbreaking tokamak reactor confirmed its final experiment generated 69.26 megajoules of energy in only five seconds. That’s over 10 megajoules more than JET’s previous world record, and more than triple its very first 22 megajoule peak power level back in 1997.

[Related: The world’s largest experimental tokamak nuclear fusion reactor is up and running.]

Located in Oxfordshire, UK, the JET reactor facility began operations in 1983 in the hopes of edging the world closer to sustainable, economically viable fusion production. While fission emits massive amounts of energy through splitting atoms, fusion involves smashing atoms such as tritium and deuterium together at temperatures over 150 million degrees Celsius to create helium plasma, a neutron, and ridiculous amounts of energy. The sun—and every other star, by extension—are essentially gigantic celestial nuclear fusion reactors, so mimicking even a fraction of that kind of power here on Earth could revolutionize the energy industry.

The first tokamak—an acronym of “toroidal chamber with magnetic coils”—reactor came online in the USSR in 1958. Tokamaks resemble a huge, extremely high-tech tire filled with hydrogen gas fuel that is then spun at high speeds through magnetic coiling. The force of its rotations around the chamber then ionizes the atoms into helium plasma.

While multiple facilities around the world can produce nuclear fusion reactions, it remains extremely cost prohibitive. JET’s December record, for example, pulled off its all-time energy levels in only five seconds—but that 69 megajoules was still only enough to warm a few bathtubs’ worth of water.

Even the most optimistic realists estimate it could take another 20 years (at the very least) before affordable fusion energy is a viable option. Others, meanwhile, argue useful fusion reactors will never be a financially feasible solution. It currently costs hundreds of thousands of dollars to simply fire up a fusion reactor, much less sustain its processes indefinitely—which none can, since the technology isn’t available yet. On top of that, today’s climate emergency can’t wait for a solution two-or-more decades down the line. But if society ever does make fusion reactors a real and sustainable alternative, however, it will be largely owed to everything JET accomplished over its four decades of service.

Speaking with the BBC on Thursday, UK Minister for Nuclear and Networks Andrew Bowie called JET’s final experiment a “fitting swan song” for the reactor pushing the world “closer to fusion energy than ever before.”
With JET powered down for good, the world’s largest fusion reactor is now Japan’s six-story-tall JT-60SA tokamak located north of Tokyo. Although inaugurated in December 2023, if all goes as planned the JT-60SA won’t hold the title for long. Its European sibling, the International Thermonuclear Experimental Reactor (ITER) is scheduled to go online sometime in 2025—although that project has not been without its difficulties and delays.

The post Aging reactor sets new fusion energy record in last hurrah appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The first-ever space solar power tests are finished after a year in orbit https://www.popsci.com/technology/space-solar-power-mission-end/ Tue, 16 Jan 2024 21:15:00 +0000 https://www.popsci.com/?p=599007
A colorized view of the DOLCE structure finalizing its uncoiling process, as seen from the boom camera, over Antarctica, on August 22, 2023.
A colorized view of the DOLCE structure finalizing its uncoiling process, as seen from the boom camera, over Antarctica, on August 22, 2023. All four quadrants of the DOLCE structure can be seen forming an X shape over Momentus Vigoride 5 spacecraft's deck. Visible as well are MAPLE (golden, top left) and Alba (white, bottom left). Credit: Space Solar Power Project/Caltech

The Solar Space Power Demonstrator satellite ran three experiments to begin assessing the tech's feasibility.

The post The first-ever space solar power tests are finished after a year in orbit appeared first on Popular Science.

]]>
A colorized view of the DOLCE structure finalizing its uncoiling process, as seen from the boom camera, over Antarctica, on August 22, 2023.
A colorized view of the DOLCE structure finalizing its uncoiling process, as seen from the boom camera, over Antarctica, on August 22, 2023. All four quadrants of the DOLCE structure can be seen forming an X shape over Momentus Vigoride 5 spacecraft's deck. Visible as well are MAPLE (golden, top left) and Alba (white, bottom left). Credit: Space Solar Power Project/Caltech

An orbital satellite testing the technological feasibility of one day harvesting and transmitting solar energy down to Earth has concluded its year long mission, and researchers are eager to dive into the results. According to Caltech’s mission recap released today, engineers behind the Solar Space Power Demonstrator (SSPD-1) consider all three of 110-pound prototype’s onboard tools a success and believe the project “will help chart the future of space solar power.” That future, however, is still potentially decades away, if such projects are funded.

Launched aboard a SpaceX Falcon 9 rocket in early January 2023, the SSPD-1 contained  a trio of experiments: First, its Deployable on-Orbit ultraLight Composite Experiment (DOLCE) investigated the durability and efficacy lightweight, origami-inspired solar panel structures, while ALBA (Italian for “dawn”) tested 32 different photovoltaic cell designs to determine which may best be suited for space. At the same time, the Microwave Array for Power-transfer Low-orbit Experiment (MAPLE) tested microwave transmitters meant to convey solar power harvested in orbit back to Earth.

[Related: A potentially revolutionary solar harvester just left the planet.]

Perhaps most importantly, MAPLE successfully demonstrated for the first time ever that solar power can be collected by photovoltaic cells and transmitted down to Earth via a microwave beam. Over the course of eight more months, SSPD-1 team members purposefully ramped up MAPLE’s stress tests, eventually leading to a drop in transmission capabilities. Researchers then reproduced the issue in a laboratory setting, eventually determining that complex electrical-thermal interactions and the wear-down of individual array components were to blame.

Sun photo

Ali Hajimiri, co-director of Caltech’s Space Solar Power Project (SSPP) and the Bren Professor of Electrical Engineering and Medical Engineering, announced today that the results “have already led to revisions in the design of various elements of MAPLE to maximize its performance over extended periods of time.”

“Testing in space with SSPD-1 has given us more visibility into our blind spots and more confidence in our abilities,” Hajimiri added.

Today’s solar cells used in satellites and other space technologies are as much as 100 times more expensive to manufacture than their terrestrial counterparts. Caltech explains this is largely due to the cost of adding protective crystal films known as epitaxial growth. ALMA determined that perovskite solar cells, although a promising design here on Earth, showed major performance variabilities in space. At the same time, gallium arsenide cells worked consistently well over a large period of time—but without the need for including epitaxial growth.

As for DOLCE, researchers readily admitted on Monday that “not everything went according to plan.” Although originally meant to deploy over three-to-four-days, DOLCE encountered multiple engineering issues, such as snagged wiring and jammed mechanical components. Thankfully, the team managed to sort out the issues by referencing onboard cameras to mimic the problems on a full-scale lab replica. Despite the headaches, DOLCE’s space test “demonstrated the robustness of the basic concept,” according to SSPP co-director and Joyce and Kent Kresa Professor of Aerospace and Civil Engineering, Sergio Pellegrino.

[Related: Are solar panels headed for space?]

But even with SSPD-1’s overall successes, it still may be years before solar power could be efficiently and affordably amassed using satellite arrays. Previous estimates put solar power gathered in space at costing $1-2/kWh, while it is currently less than $0.17/kWh for US electricity. Material costs will need to drastically decrease, while also still remaining strong enough to endure space’s solar radiation and geomagnetic activity.

There are other issues that need addressing before space-derived solar power can ever contribute to humanity’s sustainable energy infrastructure. As The New York Times noted last year, the amount of energy transferred by SSPD-1 through a microwave beam was extremely negligible compared to what’s needed for everyday use, and such orbital solar arrays will likely need to be several thousand feet wide—the International Space Station, for reference, is just 357-feet-long. There are also questions of safety regarding beaming powerful microwaves and laser beams back to Earth.

SSPP researchers are aware that all these problems require solutions before orbital solar farms are truly possible. But their most recent progress indicates that, at the very least, they appear to be on a promising path.

The post The first-ever space solar power tests are finished after a year in orbit appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The world’s largest experimental tokamak nuclear fusion reactor is up and running https://www.popsci.com/technology/japan-jt60sa-fusion-reactor/ Mon, 04 Dec 2023 17:00:00 +0000 https://www.popsci.com/?p=593616
Completed JT-60SA experimental nuclear fusion facility in Japan
A view of the assembled experimental JT-60SA tokamak nuclear fusion facility outside Tokyo, Japan. JT-60SA.org

Located north of Tokyo, the six-story high JT-60SA could spur advancements towards the 'Holy Grail' of renewable energy.

The post The world’s largest experimental tokamak nuclear fusion reactor is up and running appeared first on Popular Science.

]]>
Completed JT-60SA experimental nuclear fusion facility in Japan
A view of the assembled experimental JT-60SA tokamak nuclear fusion facility outside Tokyo, Japan. JT-60SA.org

Japan and the European Union have officially inaugurated testing at the world’s largest experimental nuclear fusion plant. Located roughly 85 miles north of Tokyo, the six-story, JT-60SA “tokamak” facility heats plasma to 200 million degrees Celsius (around 360 million Fahrenheit) within its circular, magnetically insulated reactor. Although JT-60SA first powered up during a test run back in October, the partner governments’ December 1 announcement marks the official start of operations at the world’s biggest fusion center, reaffirming a “long-standing cooperation in the field of fusion energy.”

The tokamak—an acronym of the Russian-language designation of “toroidal chamber with magnetic coils”—has led researchers’ push towards achieving the “Holy Grail” of sustainable green energy production for decades. Often described as a large hollow donut, a tokamak is filled with gaseous hydrogen fuel that is then spun at immense high speeds using powerful magnetic coil encasements. When all goes as planned, intense force ionizes atoms to form helium plasma, much like how the sun produces its energy.

[Related: How a US lab created energy with fusion—again.]

Speaking at the inauguration event, EU energy commissioner Kadri Simson referred to the JT-60SA as “the most advanced tokamak in the world,” representing “a milestone for fusion history.”

“Fusion has the potential to become a key component for energy mix in the second half of this century,” she continued.

But even if such a revolutionary milestone is crossed, it likely won’t be at JT-60SA. Along with its still-in-construction sibling, the International Thermonuclear Experimental Reactor (ITER) in Europe, the projects are intended solely to demonstrate scalable fusion’s feasibility. Current hopes estimate ITER’s operational start for sometime in 2025, although the undertaking has been fraught with financial, logistical, and construction issues since its groundbreaking back in 2011.

Experts alongside Simson believe creating sustainable nuclear fusion would mark a revolutionary moment that could ensure an emissionless, renewable energy future. Making the power source a feasible reality, however, is fraught with technological and economic hurdles. Researchers have chased this goal for a long time: The world’s first experimental tokamak was built back in 1958 by the USSR.

While researchers can now generate fusion energy at multiple facilities around the world, it is usually at a net loss. By advancing the technology further at facilities like JT-60SA, however, industry experts think that it is only a matter of time until fusion reactors regularly achieve net energy production gains.

[Related: Colorado is getting a state-of-the-art laser fusion facility.]

In the meantime, another possible road to fusion energy is making its own promising gains. Earlier this year, the National Ignition Facility (NIF) at Northern California’s Lawrence Livermore National Laboratory achieved a net energy gain for the second time using what’s the inertial confinement fusion method. In this process, a high-powered laser is split into 192 beams that then hit a capsule containing a pellet of tritium and deuterium. The resultant X-rays generate pressure and temperatures that then initiate fusion.

No matter which process—be it tokamak reactors or ICF lasers—a successful nuclear fusion facility could play a major role in finally shifting humanity away from fossil fuels.

The post The world’s largest experimental tokamak nuclear fusion reactor is up and running appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Geothermal energy now helps power Google’s desert data centers https://www.popsci.com/technology/google-fervo-geothermal-energy/ Wed, 29 Nov 2023 19:00:00 +0000 https://www.popsci.com/?p=593086
Google and Fervo's geothermal power plant in Nevada at dusk
The new facility uses novel mining techniques first developed for the oil and gas industries. Google / Fervo

The unique facility is part of the tech company's ongoing sustainability goals, and potential the first of many to come.

The post Geothermal energy now helps power Google’s desert data centers appeared first on Popular Science.

]]>
Google and Fervo's geothermal power plant in Nevada at dusk
The new facility uses novel mining techniques first developed for the oil and gas industries. Google / Fervo

Google’s first-of-its-kind geothermal power plant is now fully operational in Nevada, marking a major moment in the company’s overall goal to power its office campuses and data centers using carbon-free energy by 2030. Built in partnership with the green energy startup Fervo, the facility feeds clean electricity into a local grid connected to the tech company’s Google Cloud operations in Las Vegas, as well as data centers in Henderson and Reno.

[Related: An American start-up claims it just set a geothermal energy record.]

According to a November 28 announcement, Fervo’s geothermal energy procurement differs from traditional methods through its reliance on drilling techniques developed within the oil and gas industry. Known as an enhanced geothermal system (EGS), Fervo first drilled a pair of 7,700 feet deep wells into a gas reservoir before connecting them through nearly mile-long horizontal pipes. Fluid pumped into the reservoir then heats the underground region as high as 376 degrees Fahrenheit. Steam then travels to aboveground turbines, which generate clean electricity. During the entire procedure, fiber optic wiring within the wells provides real-time performance monitoring. 

Fervo successfully completed an industry-standard 30-day trial run over the summer at its Project Red commercial pilot site in Nevada. At the time, the geothermal plant produced 3.5 megawatts of sustained power—enough to power roughly 2,600 homes. Now, that same energy will help keep the lights on at a handful of Google’s local, resource-devouring data centers.

Geothermal production is an increasingly attractive alternative power source to other sustainable industries such as wind and solar, since it is capable of providing around the clock energy regardless of time or weather conditions. According to the US Department of Energy, the country rests above enough geothermal reserves to theoretically power the entire world—yet geothermal energy supplied roughly 0.4 percent of all US energy in 2022. Federal regulators estimate up to 120 gigawatts of geothermal energy could come online within the US by 2050, enough for about 15 percent of the country’s anticipated electricity needs.

[Related: How Google Search is helping ‘greenwash’ oil companies.]

Google first pledged carbon neutrality in 2007, and continues to pursue its ambitious goal of carbon-free power at all its office campuses and data centers by 2030. Such a feat remains a massive undertaking—current geothermal kilowatt-per-hour costs are about 90 percent more expensive than the Department of Energy’s current goal of $45/kWh by 2035. Over the summer, Fervo CEO Tim Latimer described the Nevada facility’s production costs as “significantly” higher than the DOE goal, but expects the price to significantly lower in the coming years as the technology scales. Fervo clearly wants to help with that scaling—the company is currently working on a 400 megawatt geothermal facility located in Utah scheduled to go online in 2026.

The post Geothermal energy now helps power Google’s desert data centers appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
A Danish company just scrapped its ambitious plan for a New Jersey offshore wind farm https://www.popsci.com/technology/orsted-ocean-wind-cancelled/ Wed, 01 Nov 2023 15:45:00 +0000 https://www.popsci.com/?p=585237
Offshore wind turbine being constructed with nearby supply ship
An offshore turbine similar to Ocean Wind's plans during construction off Scotland's coast. Deposit Photos

Ørsted cancelled Ocean Wind I and II, but still has plans in Rhode Island.

The post A Danish company just scrapped its ambitious plan for a New Jersey offshore wind farm appeared first on Popular Science.

]]>
Offshore wind turbine being constructed with nearby supply ship
An offshore turbine similar to Ocean Wind's plans during construction off Scotland's coast. Deposit Photos

The wind energy company Ørsted has officially shuttered plans for two New Jersey offshore wind farms, citing rising inflation, interest rates, and supply chain problems. The blow to US green energy infrastructure arrives less than two weeks after the Danish wind industry giant promised to pay the Garden State a $100 million penalty if its Ocean Wind I turbines weren’t online by the end of 2025. But although the company’s plans off the coast of Atlantic City are canceled, similar projects are still underway across the US as the country transitions towards a sustainable energy infrastructure.

“We are extremely disappointed to have to take this decision, particularly because New Jersey is poised to be a US and global hub for offshore wind energy,” David Hardy, Ørsted Group EVP and CEO Americas, said in an October 31 statement. “I want to thank Governor Murphy and NJ state and local leaders who helped support these projects and continue to lead the region in developing American renewable energy and jobs.”

[Related: Atlantic City’s massive offshore wind farm project highlights the industry’s growing pains.]

According to the Associated Press on Tuesday, however, NJ Gov. Phil Murphy had strong words for the company, citing Ørsted’s recent statements “regarding the viability and progress of the Ocean Wind I project.”

“Today’s decision by Ørsted to abandon its commitments to New Jersey is outrageous and calls into question the company’s credibility and competence,” added Gov. Murphy per the AP. He also hinted at impending plans to pursue an additional $200 million Ørsted reportedly pledged for the state’s offshore wind industry. In the meantime, Gov. Murphy reiterated New Jersey’s commitment to offshore wind infrastructure, and said the state will solicit a new round of project proposals in the near future.

Both Ocean Wind endeavors had faced intense scrutiny and pushback from both Republican state legislators and locals, who criticized the farms’ alleged ecological impacts, ocean horizon views, as well as the millions of dollars in subsidies granted to Ørsted. Earlier this month, Ørsted received a lawsuit filed on behalf of an environmental group called Clean Ocean Action alongside multiple seafood and fishing organizations. In May 2023, the Bureau of Ocean Energy Management released an over 2,300 page Final Environmental Impact Statement on Ocean Wind 1, which deemed it responsibly designed and safe for the region’s ecological health.

If completed, Ocean Wind I would have included nearly 100 giant turbines roughly 15 miles off the southeast coast of Atlantic City, New Jersey. Once online, the farm would have annually generated 1.1 gigawatts of energy—enough to power over 500,000 homes. Ocean Wind II was slated for construction next to its sibling wind farm, and would have offered similar energy outputs.

[Related: Watch a heavy-lifting drone land a perfect delivery on an offshore wind turbine.]

While the Danish company’s plans in New Jersey are dashed, America’s wind farm buildup is still progressing elsewhere—and Ørsted remains a part of that trajectory. The same day as its Ocean Wind announcement, the company confirmed it is moving forward with a $4 billion project, Revolution Wind, off the coast of Rhode Island. If completed, the offshore wind farm will supply clean energy for residents in both Rhode Island and Connecticut.

Meanwhile, a utility company called Dominion Energy received crucial federal approval on Tuesday for plans to construct 176 turbines over 20 miles off the coast of Virginia. Dominion claims the project is the largest offshore project in the US, and will generate enough energy for nearly 660,000 homes upon its estimated late-2026 completion date. According to a 2015 report from the US Department of Energy, wind farms could supply over a third of US electricity by 2050.

The post A Danish company just scrapped its ambitious plan for a New Jersey offshore wind farm appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Watch a heavy-lifting drone land a perfect delivery on an offshore wind turbine https://www.popsci.com/technology/autonomous-drone-wind-turbine-delivery/ Tue, 31 Oct 2023 15:30:00 +0000 https://www.popsci.com/?p=584740
The drone weighs in at nearly 130 pounds, and is as wide as an albatross' wingspan.
The drone weighs in at nearly 130 pounds, and is as wide as an albatross' wingspan. Ørsted

A drone the size of an albatross is testing deliveries in the North Sea.

The post Watch a heavy-lifting drone land a perfect delivery on an offshore wind turbine appeared first on Popular Science.

]]>
The drone weighs in at nearly 130 pounds, and is as wide as an albatross' wingspan.
The drone weighs in at nearly 130 pounds, and is as wide as an albatross' wingspan. Ørsted

An autonomous drone with the wingspan of an albatross is now trialing cargo restocks for a giant offshore wind farm in the North Sea. Overseen by the Danish wind power company Ørsted, the 128-pound unmanned aerial vehicle (UAV)—roughly the weight of “a large baby giraffe”—is meant to cut down on time and costs, while also improving overall operational safety, and is billed as the first of its kind in the world.

“Drones mean less work disturbance as turbines don’t have to be shut down when cargo is delivered,” Ørsted’s October 30 announcement states. “They avoid risk, making it safer for personnel working on the wind farm and minimize the need for multiple journeys by ship, reducing carbon emissions and climate change impacts.”

Drones photo

In a video posted to the social media platform, X, the hefty drone is shown launching from a cargo ship’s deck while towing a large orange bag suspended by a cable beneath the UAV. From there, the transport soars over a few hundred feet of North Sea waters to hover above one of Hornsea 1’s 7-megawatt wind turbines. Once in place, the drone carefully lands its cargo on the platform before releasing its tether to return to its crew transfer vessel, where human pilots have overseen the entire process.

While Ørsted didn’t name its drone partner in the project announcement, additional promotional materials provided by the company confirm it is a Skylift, a UK-based business focusing on offshore wind farm deliveries.

[Related: Atlantic City’s massive offshore wind farm project highlights the industry’s growing pains.]

“[W]e want to use our industry leading position to help push forward innovations that reduce costs and maximize efficiency and safety in the offshore wind sector,” Mikkel Haugaard Windolf, head of Ørsted’s offshore logistics project, said via the company’s October 30 reveal, adding that, “Drone cargo delivery is an important step in that direction.”

Ørsted’s Hornsea 1 wind farm consists of 174 turbines installed across over 157-square-miles in the North Sea. Generating roughly 1.7Gw of power, the farm’s electricity is enough to sustainably power over 1 million homes in the UK.

Despite the company’s multiple Hornsea wind farm successes, Ørsted has encountered significant setbacks during attempts to expand into the US market. Earlier this month, local officials in Cape May County, NJ, filed a lawsuit attempting to block construction of a 1.1 gigawatt project involving nearly 100 turbines off the coast of Atlantic City, citing regulatory sidesteps and environmental concerns. In an email to PopSci at the time, the American Clean Power Association’s Director of Eastern Region State Affairs described the lawsuit as “meritless,” and reiterated that offshore wind energy production remains “one of the most rigorously regulated industries in the nation.”

According to a 2015 report from the US Department of Energy, wind farms could supply over a third of the country’s sustainable electricity by 2050.

The post Watch a heavy-lifting drone land a perfect delivery on an offshore wind turbine appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Chicken feather fibers could help make less toxic hydrogen fuel cells https://www.popsci.com/technology/chicken-feathers-hydrogen-fuel-cells/ Tue, 24 Oct 2023 14:10:00 +0000 https://www.popsci.com/?p=582786
Chicken feathers are a major pollution byproduct in the poultry industry.
Chicken feathers are a major pollution byproduct in the poultry industry. DepositPhotos

Chicken feathers are a major source of food industry waste, but their keratin may be an alternative to hydrogen fuel cells' 'forever chemicals.'

The post Chicken feather fibers could help make less toxic hydrogen fuel cells appeared first on Popular Science.

]]>
Chicken feathers are a major pollution byproduct in the poultry industry.
Chicken feathers are a major pollution byproduct in the poultry industry. DepositPhotos

Chicken feathers, much like human hair and fingernails, are composed mostly of a tough protein called keratin. And like with your own hair and nails, the birds produce a lot of feathers over the course of their lives. Generally speaking, this isn’t a big issue—but it’s another matter for the food industry. Each year, approximately 40 million metric tons of chicken feathers are incinerated during the poultry production process, releasing harmful fumes like carbon and sulfur dioxide.

Finding a new use for all those feathers could dramatically cut down on food waste and pollution, and a team of researchers may have figured out what to do with them: turn feathers into a vital component of green hydrogen fuel cells.

[Related: Why you should build a swing for your chickens.]

As detailed in a new paper published via ACS Applied Materials & Sciences, scientists from ETH Zurich and Nanyang Technological University Singapore (NTU) have developed a method to extract feathers’ keratin and spin it into thin fibers called amyloid fibrils. From there, these fibrils can be installed as a hydrogen fuel cell’s vital semipermeable membrane. Traditionally composed of highly poisonous “forever chemicals,” these membranes allow protons to pass through while excluding electrons. The blocked electrons are then forced to travel via an external circuit from negative anodes to positive cathode, thus creating electricity.

“Our latest development closes a cycle: [we took] a substance that releases CO2 and toxic gasses when burned, and used it in a different setting,” Raffaele Mezzenga, a professor of food and soft materials at ETH Zurich, said in a recent university profile. “With our new technology, it not only replaces toxic substances, but also prevents the release of CO2, decreasing the overall carbon footprint cycle.”

According to researchers, the keratin-derived membranes are already cheaper to produce in a lab setting than existing synthetic hydrogen fuel cell membranes, and hope similar savings will translate to mass production. The team has applied for a joint patent, and is now looking for partners and investors to make the product publicly available. Still, a number of hurdles remain for the fuel cells to become truly viable renewable energy sources. While hydrogen cells’ only emissions are heat and water, the power that actually helps generate their electricity still largely stems from natural gas sources like methane. Such a reliance arguably undercuts hydrogen fuel cells’ promise of green energy.

But even there, chicken feathers could once again come to the rescue. The keratin membranes reportedly also show promise in the electrolysis portion of hydrogen energy production, when direct current travels through water to split the molecules into oxygen and hydrogen.

The post Chicken feather fibers could help make less toxic hydrogen fuel cells appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Atlantic City’s massive offshore wind farm project highlights the industry’s growing pains https://www.popsci.com/technology/offshore-wind-farm-lawsuit-ocean-wind-1-atlantic-city-new-jersey/ Thu, 19 Oct 2023 15:30:00 +0000 https://www.popsci.com/?p=581023
Orsted offshore wind turbines in the UK
New Jersey's offshore wind farm could look like Ørsted's Walney, UK project—if it ever begins construction. Ørsted

Ocean Wind 1 faces its latest legal challenge.

The post Atlantic City’s massive offshore wind farm project highlights the industry’s growing pains appeared first on Popular Science.

]]>
Orsted offshore wind turbines in the UK
New Jersey's offshore wind farm could look like Ørsted's Walney, UK project—if it ever begins construction. Ørsted

Back in 2015, the US Department of Energy estimated wind farms could supply over a third of the nation’s electricity by 2050. Since then, numerous wind turbine projects have been green-lit offshore and across the country. However, when it comes to building, it can get tricky, like in the case of a planned wind farm 15 miles off the southeast coast of Atlantic City, New Jersey.

Danish wind farm company Ørsted recently promised to cut New Jersey a $100 million check if the company’s massive Ocean Wind 1 offshore turbines weren’t up and running by the end of 2025. Less than a week after the wager, however, officials in the state’s southernmost county have filed a US District Court lawsuit to nix the 1.1 gigawatt project involving nearly 100 turbines, alleging regulatory sidesteps and ecological concerns.

[Related: The NY Bight could write the book on how we build offshore wind farms.]

According to the Associated Press, Cape May County government’s October 16 lawsuit also names the Clean Ocean Action environmental group alongside multiple seafood and fishing organizations as plaintiffs. The filing against both the National Oceanic and Atmospheric Administration and the Bureau of Ocean Energy Management claims that the Ocean Wind 1 project sidestepped a dozen federal legal requirements, as well as failed to adequately investigate offshore wind farms’ potential environmental and ecological harms. However, earlier this year, the Bureau of Ocean Energy Management released its over 2,300 page Final Environmental Impact Statement on Ocean Wind 1, which concluded the project is responsibly designed and adequately protects the region’s ecological health.

An Ørsted spokesperson declined to comment on the lawsuit for PopSci, but related the company “remains committed to collaboration with local communities, and will continue working to support New Jersey’s clean energy targets and economic development goals by bringing good-paying jobs and local investment to the Garden State.”

[Related: A wind turbine just smashed a global energy record—and it’s recyclable.]

Wind turbine farm companies, Ørsted included, have faced numerous issues in recent years thanks to supply chain bottleneck issues, soaring construction costs, and legal challenges such as the latest from Cape May County. Earlier this year, Ørsted announced its US-based projects are now worth less than half of their initial economic estimates.

Other clean energy advocates reiterated their support for the New Jersey wind farm. In an email to PopSci, Moira Cyphers, Director of Eastern Region State Affairs for the American Clean Power Association, described the lawsuit as “meritless.”

“Offshore wind is one of the most rigorously regulated industries in the nation and is critical for meeting New Jersey’s clean energy and environmental goals,” Cyphers continued. “Shore towns can’t wait for years and years for these projects to be constructed. The time to move forward is now.”

The post Atlantic City’s massive offshore wind farm project highlights the industry’s growing pains appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
This off-roading, solar-powered vehicle just sped across the Sahara https://www.popsci.com/technology/solar-powered-off-road-car-sahara/ Mon, 16 Oct 2023 20:00:00 +0000 https://www.popsci.com/?p=580068
Stella Terra solar powered car action shot on road
The Stella Terra can travel at least 440 miles on a sunny day. STE / Bart van Overbeeke

Designed by college students, the Stella Terra zipped through Morocco and portions of the desert as fast as 90 mph.

The post This off-roading, solar-powered vehicle just sped across the Sahara appeared first on Popular Science.

]]>
Stella Terra solar powered car action shot on road
The Stella Terra can travel at least 440 miles on a sunny day. STE / Bart van Overbeeke

Despite decades of innovation, solar powered cars remain comparatively expensive and difficult to mass produce—but that doesn’t mean they aren’t starting to pack a serious punch. At least one prototype reportedly handled an off-road sojourn across the world’s largest non-polar desert at speeds as fast as 90 mph.

Designed by a team of 21-to-25-year-old  college students at the Netherland’s Eindhoven University of Technology, their Stella Terra recently completed a 620 mile (1,000 km) test drive that began in Morocco before speeding through portions of Tangier and the Sahara. While miles ahead of what is currently available to consumers, the army green two-seater could be a preview of rides to come.

[Related: Sweden is testing a semi-truck trailer covered in 100 square meters of solar panels.]

As highlighted by The Guardian on Monday, the aerodynamic, comparatively lightweight (1,200 kg) Stella Terra can travel at least 440 miles on a clear, sunny day without recharging. This is thanks to the car’s solar converter designed in-house by the students, which turns 97 percent of its absorbed sunlight into an electrical charge. For cloudier situations, however, the vehicle also includes a lithium-ion battery capable of powering shorter excursions. For comparison, the most efficient panels available today only sustain roughly 45 percent efficiency, while the vast majority measure somewhere between 15 and 20 percent. According to The Guardian’s rundown, Stella Terra’s panels actually proved a third more efficient than designers expected.

In a September project update, Wisse Bos, Solar Team Eindhoven’s team manager, estimated Stella Terra’s designs are between 5 and 10 years ahead of anything available on the current market. But Bos also stressed their ride is meant to inspire similar experimentation and creativity within the automotive industry.

[Related: Swiss students just slashed the world record for EV acceleration.]

“With Stella Terra, we want to demonstrate that the transition to a sustainable future offers reasons for optimism and encourages individuals and companies to accelerate the energy transition,” Bos said at the time.

While the innovative, army green off-roadster is unlikely to hit American highways anytime soon, the students believe larger auto manufacturers’ could look to Stella Terra to help guide their own plans for more sustainable transportation options. Speaking with CNN on Monday, the team’s event manager, Thieme Bosman, hopes companies such as Ford and Chrysler will take notice of such a vehicle’s feasibility. “It’s up to the market now, who have the resources and the power to make this change and the switch to more sustainable vehicles,” Bosman said.

And if off-roading isn’t your thing, don’t worry: Solar Team Eindhoven’s previous teams have also designed luxury vehicles, self-driving cars, and even mobile tiny homes powered by the sun.

The post This off-roading, solar-powered vehicle just sped across the Sahara appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
China says it discovered potentially vast amounts of a rare superconducting material https://www.popsci.com/technology/china-niobium-discovery-mine/ Mon, 16 Oct 2023 15:00:00 +0000 https://www.popsci.com/?p=579923
Workers at rare earth mineral mine next to equipment in China
Workers at a rare earth mine in Inner Mongolia in 2010. Deposit Photos

Dubbed 'niobobaotite,' a new type of ore found in China's mine in Inner Mongolia could be used to boost rechargeable batteries and reinforce steel.

The post China says it discovered potentially vast amounts of a rare superconducting material appeared first on Popular Science.

]]>
Workers at rare earth mineral mine next to equipment in China
Workers at a rare earth mine in Inner Mongolia in 2010. Deposit Photos

Niobium can be found in steel, particle accelerators, MRI machines, and rockets, but sourcing it is largely limited to a handful of countries including Brazil and Canada. Earlier this month, however, Chinese news outlets announced the discovery of a never-before-seen type of ore deposit in Inner Mongolia containing potentially vast amounts of the superconductive rare earth element. According to Antonio Castro Neto, a professor of electrical and computer engineering at the National University of Singapore speaking with the South China Morning Post, the new resource trove could even be so large that it would make China self-sufficient in its own niobium needs.

The ore found in Inner Mongolia—dubbed niobobaotite—also contains large quantities of barium, titanium, iron, and chlorine, according to a statement from China National Nuclear Corporation (CNNC) earlier this month.

Discovered in 1801, niobium is named after Tantalus’ daughter Niobe in Greek mythology due to its chemical relationship to tantalum. Almost 85-to-90 percent of all mined niobium in the world goes towards iron and steel processing production. Adding just 0.03-0.05 percent to steel, for example, can boost its strength by as much as 30 percent while adding virtually no extra weight. That prized performance enhancement is comparatively difficult to obtain, however. The element only occurs within the Earth’s crust at a proportion of roughly 20-parts-per-million.

[Related: New factory retrofit could reduce a steel plant’s carbon emissions by 90 percent.]

In addition to its many current uses, niobium is of particular interest to researchers hoping to further the development of niobium-graphene and niobium-lithium batteries. Lithium-ion batteries are currently the most widespread rechargeable power sources, but remain restricted in terms of charge times and lifespans, as well as safety concerns. Earlier this year, researchers working on improving niobium-graphene batteries estimated future iterations of the alternative could fully charge in less than 10 minutes alongside a 30 year lifespan—approximately 10 times longer than current lithium-ion options.

As promising as the discovery may be for China, labor concerns will almost undoubtedly be an issue for outside observers. The nation has a long and troubling history of exploitation within the mining industry. Rare earth mineral mining also generates a wide array of pollution issues.

Brazil is by far the world’s largest exporter of niobium, with Canada trailing far behind in second place. China currently needs to import about 95 percent of its niobium supplies, but the newfound deposits could dramatically shift their sourcing to almost complete independence. Meanwhile, the US is currently working towards opening the Elk Creek Critical Minerals Project in southern Nebraska, which when opened will be the country’s first niobium mining and processing facility.

The post China says it discovered potentially vast amounts of a rare superconducting material appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
AI could consume as much energy as Argentina annually by 2027 https://www.popsci.com/technology/ai-energy-use-study/ Thu, 12 Oct 2023 17:00:00 +0000 https://www.popsci.com/?p=579119
Computer server stacks in dark room
AI programs like ChatGPT could annually require as much as 134 TWh by 2027. Deposit Photos

A new study adds 'environmental stability' to the list of AI industry concerns.

The post AI could consume as much energy as Argentina annually by 2027 appeared first on Popular Science.

]]>
Computer server stacks in dark room
AI programs like ChatGPT could annually require as much as 134 TWh by 2027. Deposit Photos

Artificial intelligence programs’ impressive (albeit often problematic) abilities come at a cost—all that computing power requires, well, power. And as the world races to adopt sustainable energy practices, the rapid rise of AI integration into everyday lives could complicate matters. New expert analysis now offers estimates of just how energy hungry the AI industry could become in the near future, and the numbers are potentially concerning.

According to a commentary published October 10 in Joule, Vrije Universiteit Amsterdam Business and Economics PhD candidate Alex de Vries argues that global AI-related electricity consumption could top 134 TWh annually by 2027. That’s roughly comparable to the annual consumption of nations like Argentina, the Netherlands, and Sweden.

[Related: NASA wants to use AI to study unidentified aerial phenomenon.]

Although de Vries notes data center electricity usage between 2010-2018 (excluding resource-guzzling cryptocurrency mining) has only increased by roughly 6 percent, “[t]here is increasing apprehension that the computation resources necessary to develop and maintain AI models and applications could cause a surge in data centers’ contribution to global electricity consumption.” Given countless industries’ embrace of AI over the last year, it’s not hard to imagine such a hypothetical surge becoming reality. For example, if Google—already a major AI adopter—integrated technology akin to ChatGPT into its 9 billion-per-day Google searches, the company could annually burn through 29.2 TWh of power, or as much electricity as all of Ireland.

de Vries, who also founded the digital trend watchdog research company Digiconomist, believes such an extreme scenario is somewhat unlikely, mainly due to AI server costs alongside supply chain bottlenecks. But the AI industry’s energy needs will undoubtedly continue to grow as the technologies become more prevalent, and that alone necessitates a careful review of where and when to use such products.

This year, for example, NVIDIA is expected to deliver 100,000 AI servers to customers. Operating at full capacity, the servers’ combined power demand would measure between 650 and 1,020 MW, annually amounting to 5.7-8.9 TWh of electricity consumption. Compared to annual consumption rates of data centers, this is “almost negligible.” 

By 2027, however, NVIDIA could be (and currently is) on track to ship 1.5 million AI servers per year. Estimates using similar electricity consumption rates put their combined demand between 85-134 TWh annually. “At this stage, these servers could represent a significant contribution to worldwide data center electricity consumption,” writes de Vries.

As de Vries’ own site argues, AI is not a “miracle cure for everything,” still must deal with privacy concerns, discriminatory biases, and hallucinations. “Environmental sustainability now represents another addition to this list of concerns.”

The post AI could consume as much energy as Argentina annually by 2027 appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
This nuclear byproduct is fueling debate over Fukushima’s seafood https://www.popsci.com/environment/fukushima-water-releases-tritium/ Sat, 07 Oct 2023 19:00:00 +0000 https://www.popsci.com/?p=577435
Blue bins of fish and other seafood caught near the Fukushima nuclear plant in Japan
Fishery workers sort out seafood caught in Japan's Fukushima prefecture about a week after the country began discharging treated wastewater from the Fukushima Daiichi nuclear power plant. STR/JIJI Press/AFP via Getty Images

Is disposing water from the Fukushima nuclear plant into the ocean safe for marine life? Scientists say it's complicated.

The post This nuclear byproduct is fueling debate over Fukushima’s seafood appeared first on Popular Science.

]]>
Blue bins of fish and other seafood caught near the Fukushima nuclear plant in Japan
Fishery workers sort out seafood caught in Japan's Fukushima prefecture about a week after the country began discharging treated wastewater from the Fukushima Daiichi nuclear power plant. STR/JIJI Press/AFP via Getty Images

On October 5, operators of Japan’s derelict Fukushima Daiichi nuclear power plant resumed pumping out wastewater held in the facility for the past 12 years. Over the following two-and-a-half weeks, Tokyo Electric Power Company (TEPCO) plans to release around 7,800 tons of treated water into the Pacific Ocean.

This is TEPCO’s second round of discharging nuclear plant wastewater, following an initial release in September. Plans call for the process, which was approved by and is being overseen by the Japanese government, to go on intermittently for some 30 years. But the approach has been controversial: Polls suggest that around 40 percent of the Japanese public opposes it, and it has sparked backlash from ecological activists, local fishermen, South Korean citizens, and the Chinese government, who fear that radiation will harm Pacific ecosystems and contaminate seafood.

Globally, some scientists argue there is no cause for concern. “The doses [or radiation] really are incredibly low,” says Jim Smith, an environmental scientist at the University of Portsmouth in the UK. “It’s less than a dental X-ray, even if you’re consuming seafood from that area.”

Smith vouches for the water release’s safety in an opinion article published on October 5 in the journal Science. The International Atomic Energy Agency has endorsed TEPCO’s process and also vouched for its safety. But experts in other fields have strong reservations about continuing with the pumping.

“There are hundreds of clear examples showing that, where radioactivity levels are high, there are deleterious consequences,” says Timothy Mousseau, a biologist at the University of South Carolina.

[Related: Nuclear war inspired peacetime ‘gamma gardens’ for growing mutant plants]

After a tsunami struck the Fukushima nuclear power plant in 2011, TEPCO started frantically shunting water into the six reactors to stop them from overheating and causing an even greater catastrophe. They stored the resulting 1.25 million tons of radioactive wastewater in tanks on-site. TEPCO and the Japanese government say that if Fukushima Daiichi is ever to be decommissioned, that water will have to go elsewhere.

In the past decade, TEPCO says it’s been able to treat the wastewater with a series of chemical reactions and cleanse most of the contaminant radioisotopes, including iodine-131, cesium-134, and cesium-137. But much of the current controversy swirls around one isotope the treatment couldn’t remove: tritium.

Tritium is a hydrogen isotope that has two extra neutrons. A byproduct of nuclear fission, it is radioactive with a half-life of around 12 years. Because tritium shares many properties with hydrogen, its atoms can infiltrate water molecules and create a radioactive liquid that looks and behaves almost identically to what we drink.

This makes separating it from nuclear wastewater challenging—in fact, no existing technology can treat tritium in the sheer volume of water contained at Fukushima. Some of the plan’s opponents argue that authorities should postpone any releases until scientists develop a system that could cleanse tritium from large amounts of water.

But TEPCO argues they’re running out of room to keep the wastewater. As a result, they have chosen to heavily dilute it—100 parts “clean” water for every 1 part of tritium water—and pipe it into the Pacific.

“There is no option for Fukushima or TEPCO but to release the water,” says Awadhesh Jha, an environmental toxicologist at the University of Plymouth in the UK. “This is an area which is prone to earthquakes and tsunamis. They can’t store it—they have to deal with it.”

Smith believes the same properties that allow tritium to hide in water molecules means it doesn’t build up in marine life, citing environmental research by him and his colleagues. For decades, they’ve been studying fish and insects in lakes, pools, and ponds downstream from the nuclear disaster at Chernobyl. “We haven’t really found significant impacts of radiation on the ecosystem,” Smith says.

[Related: Ultra-powerful X-rays are helping physicists understand Chernobyl]

What’s more, Japanese officials testing seawater during the initial release did not find recordable levels of tritium, which Smith attributes to the wastewater’s dilution.

But the first release barely scratches the surface of Fukushima’s wastewater, and Jha warns that the scientific evidence regarding tritium’s effect in the sea is mixed. There are still a lot of questions about how potent tritium effects are on different biological systems and different parts of the food chain. Some results do suggest that the isotope can damage fish chromosomes as effectively as higher-energy X-rays or gamma rays, leading to negative health outcomes later in life.

Additionally, experts have found tritium can bind to organic matter in various ecosystems and persist there for decades. “These things have not been addressed adequately,” Jha says.

Smith argues that there’s less tritium in this release than in natural sources, like cosmic rays that strike the upper atmosphere and create tritium rain from above. Furthermore, he says that damage to fish DNA does not necessarily correlate to adverse effects for wildlife or people. “We know that radiation, even at low doses, can damage DNA, but that’s not sufficient to damage how the organism reproduces, how it lives, and how it develops,” he says.

“We don’t know that the effects of the water release will be negligible, because we don’t really know for sure how much radioactive material actually will be released in the future,” Mousseau counters. He adds that independent oversight of the process could quell some of the environmental and health concerns.

Smith and other proponents of TEPCO’s plan point out that it’s actually common practice in the nuclear industry. Power plants use water to naturally cool their reactors, leaving them with tons of tritium-laced waste to dispose. Because tritium is, again, close to impossible to remove from large quantities of H20 with current technology, power plants (including ones in China) dump it back into bodies of water at concentrations that exceed those in the Fukushima releases.

“That doesn’t justify that we should keep discharging,” Jha says. “We need to do more work on what it does.”

If tritium levels stay as low as TEPCO and Smith assure they will, then the seafood from the region may very well be safe to eat. But plenty of experts like Mousseau and Jha don’t think there is enough scientific evidence to say that with certainty.

The post This nuclear byproduct is fueling debate over Fukushima’s seafood appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The EPA wants to tighten up their ‘zero-emission’ building definition https://www.popsci.com/technology/epa-zero-emission-guidelines/ Thu, 28 Sep 2023 19:00:00 +0000 https://www.popsci.com/?p=575671
Green architecture homes
The US is a hodgepodge of green building regulations, but the EPA hopes to simply the situation. Deposit Photos

Although not legally enforceable, the EPA's new definition could appeal to developers looking to simplify sustainable projects.

The post The EPA wants to tighten up their ‘zero-emission’ building definition appeared first on Popular Science.

]]>
Green architecture homes
The US is a hodgepodge of green building regulations, but the EPA hopes to simply the situation. Deposit Photos

The Environmental Protection Agency is releasing guidelines to more clearly define what is considered a truly “zero-emission” building. Unveiled on September 28 at the Greenbuild International Conference and Expo, the nation’s largest annual gathering for sustainable architecture, the EPA’s new outline is reportedly based on a “three pillar” approach. These pillars include no on-site emissions, the use of 100 percent renewable energy, and adherence to strict energy efficiency guidelines.

The news, first revealed via White House National Climate Adviser Ali Zaidi speaking to The Washington Post on Thursday morning, arrives as the Biden administration attempts to standardize concepts for an industry that generates nearly a third of the nation’s greenhouse gas emissions every year.

“Getting to zero emissions does not need to be a premium product. We know how to do this,” Ali Zaidi said during the interview. “It just has to get to scale, which I think a common definition will facilitate.”

[Related: Power plants may face emission limits for the first time if EPA rules pass.]

A truly “zero-emission” building is actually harder to define than it may first appear. Currently, the global green standard is generally considered Leadership in Energy and Environmental Design (LEED) certification. Developed by the US Green Building Council, an environmental nonprofit, and currently in its fifth iteration, LEED certification provides a comprehensive, tiered rating system for neighborhood developments, homes, and cities. However, it lacks the authority that could be granted by a major US federal department such as the EPA.

Lacking concise federal regulations, the US currently includes countless state and local benchmarks to meet their own ideas of eco-friendly urban planning—from California’s “zero net energy” standard for all new constructions by 2030, to reduced emission targets for 2030 and 2050 in New York. For California, a zero net energy project is defined as an “energy-efficient building where, on a source energy basis, the actual annual consumed energy is less than or equal to the on-site renewable generated energy.” Meanwhile, New York’s Local 97 law from 2019 sets carbon emission caps based on building sizes, along with multiple avenues to offset such emissions.

Although the EPA’s new definitional framework is not legally binding, the standardization could still prove incredibly attractive for real estate developers involved in projects across multiple states seeking a streamlined process.

“​​A workable, usable federal definition of zero-emission buildings can bring some desperately needed uniformity and consistency to a chaotic regulatory landscape,” Duane Desiderio, senior vice president and counsel for the Real Estate Roundtable, explained via WaPo’s rundown of the reveal.

Multiple projects in recent years have attempted to improve upon sustainable building practices in order to meet climate change’s steepest challenges. One such promising avenue is creatively incorporating recycled materials, such as diaper materials, to actually strengthen concrete mixtures for low-cost housing alternatives.

Meanwhile, termite mounds—the world’s tallest biological structures—are beginning to inspire eco-friendly cooling and heating systems, while fungi growth is providing the architectural underpinnings for a new generation of durable and sustainable building materials.

The post The EPA wants to tighten up their ‘zero-emission’ building definition appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Microsoft wants small nuclear reactors to power its AI and cloud computing services https://www.popsci.com/technology/microsoft-nuclear-power/ Tue, 26 Sep 2023 21:00:00 +0000 https://www.popsci.com/?p=574761
The NuScale VOYGR™ SMR power plant. The first NRC certified U.S. small modular reactor design. It hopes to be operational by 2029.
The NuScale VOYGR™ SMR power plant. The first NRC certified U.S. small modular reactor design. It hopes to be operational by 2029. NuScale VOYGR™ via Office of Nuclear Energy

The company posted a job opening for a 'principal program manager' for nuclear technology.

The post Microsoft wants small nuclear reactors to power its AI and cloud computing services appeared first on Popular Science.

]]>
The NuScale VOYGR™ SMR power plant. The first NRC certified U.S. small modular reactor design. It hopes to be operational by 2029.
The NuScale VOYGR™ SMR power plant. The first NRC certified U.S. small modular reactor design. It hopes to be operational by 2029. NuScale VOYGR™ via Office of Nuclear Energy

Bill Gates is a staunch advocate for nuclear energy, and although he no longer oversees day-to-day operations at Microsoft, its business strategy still mirrors the sentiment. According to a new job listing first spotted on Tuesday by The Verge, the tech company is currently seeking a “principal program manager” for nuclear technology tasked with “maturing and implementing a global Small Modular Reactor (SMR) and microreactor energy strategy.” Once established, the nuclear energy infrastructure overseen by the new hire will help power Microsoft’s expansive plans for both cloud computing and artificial intelligence.

Among the many, many, (many) concerns behind AI technology’s rapid proliferation is the amount of energy required to power such costly endeavors—a worry exacerbated by ongoing fears pertaining to climate collapse. Microsoft believes nuclear power is key to curtailing the massive amounts of greenhouse emissions generated by fossil fuel industries, and has made that belief extremely known in recent months.

[Related: Microsoft thinks this startup can deliver on nuclear fusion by 2028.]

Unlike traditional nuclear reactor designs, an SMR is meant to be far more cost-effective, easier to construct, and smaller, all the while still capable of generating massive amounts of energy. Earlier this year, the US Nuclear Regulatory Commission approved a first-of-its-kind SMR; judging from Microsoft’s job listing, it anticipates many more are to come. Among the position’s many responsibilities is the expectation that the principal program manager will “[l]aise with engineering and design teams to ensure technical feasibility and optimal integration of SMR and microreactor systems.”

But as The Verge explains, making those nuclear ambitions a reality faces a host of challenges. First off, SMRs demand HALEU, a more highly enriched uranium than traditional reactors need. For years, the world’s largest HALEU supplier has been Russia, whose ongoing invasion of Ukraine is straining the supply chain. Meanwhile, nuclear waste storage is a perpetual concern for the industry, as well as the specter of disastrous, unintended consequences.

Microsoft is obviously well aware of such issues—which could factor into why it is also investing in moonshot energy solutions such as nuclear fusion. Not to be confused with current reactors’ fission capabilities, nuclear fusion involves forcing atoms together at extremely high temperatures, thus producing a new, smaller atom alongside massive amounts of energy. Back in May, Microsoft announced an energy purchasing partnership with the nuclear fusion startup called Helion, which touts an extremely ambitious goal of bringing its first generator online in 2028.

Fission or fusion, Microsoft’s nuclear aims require at least one new job position—one with a starting salary of $133,600.

The post Microsoft wants small nuclear reactors to power its AI and cloud computing services appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
This Belgian factory’s massive mirror array turns sunlight into thermal energy https://www.popsci.com/technology/solar-heat-factory/ Tue, 19 Sep 2023 19:00:00 +0000 https://www.popsci.com/?p=572678
Avery Dennison thermal energy factory in Belgium
Over 2,400 parabolic mirrors reflect sunlight into containers of heat absorbing oil. Avery Dennison

An industrial facility in Belgium is now home to reportedly the largest of such thermal heat harvesting arrays in Europe.

The post This Belgian factory’s massive mirror array turns sunlight into thermal energy appeared first on Popular Science.

]]>
Avery Dennison thermal energy factory in Belgium
Over 2,400 parabolic mirrors reflect sunlight into containers of heat absorbing oil. Avery Dennison

A massive industrial plant in Belgium using 2,240 parabolic mirrors to harvest sunlight to create green heat is officially open. At 5,540 square meters (roughly 18,175 square feet), the site’s Concentrated Solar Thermal (CST) platform and six-module thermal storage unit is the largest of its kind in Europe, according to manufacturing company Avery Dennison.

In basic terms, the facility takes sunlight, reflects it into heat-absorbing oil, and then utilizes the oil to help supply the plant’s thermal energy needs.

Over half of the entire world’s energy consumption stems directly from manufacturing industries—meaning that these companies must adopt sustainable infrastructures to avert climate change’s worst outcomes. The European Union, in an attempt to spur such reforms, passed legislation in 2021 which set net-zero emissions targets across all its industries by 2050. As such, Avery Dennison’s new attempt at progressing towards that goal leverages direct sunlight as a substitute for fossil fuel heating systems.

The installation generates the same thermal power that can be achieved using 2.3 GWh of gas consumption, but is expected to reduce the facility’s overall emissions by an estimated 9 percent annually. During the warmer summer months when less heat is needed, however, the new system is expected to offer 100 percent of any necessary demand.

[Related: Could aquifers store renewable thermal energy?]

To convert solar rays into heating fuel, the CST platform’s curved mirrors first reflect light towards a collector tube filled with an absorption liquid such as thermal oil. This heated oil is then stored within a specialized installation similar to a giant thermos, whose heat is distributed as needed and on demand like a battery. Scaling up to six “battery” modules totalling 5 MWh of thermal power storage ensures the system can emit high temperature heat whenever required.

Among other products, Avery Dennison manufactures adhesive tapes and labels for uses across the automotive, medical device, personal care, and construction industries. According to the company, most of the vast array’s generated heat will be directed into drying ovens used during the coating process of pressure-sensitive adhesive products.

“We have big ambitions to tackle climate change and achieve net zero by 2050,” Mariana Rodriguez, general manager of Avery Dennison Performance Tapes Europe, said via the company’s announcement. “To meet these goals we will look across our industrial processes and identify opportunities to implement new technologies that decarbonize and reduce our reliance on fossil fuels.”

Thermal power storage is showing increasing promise as a cheap, sustainable way to meet industries’ heating needs. In recent years, new research indicates methods such as utilizing silica sand and even underwater aquifer water could offer effective means for housing thermal energy.

The post This Belgian factory’s massive mirror array turns sunlight into thermal energy appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Heat pumps still get the job done in extreme cold https://www.popsci.com/environment/heat-pump-performance-study/ Wed, 13 Sep 2023 16:00:00 +0000 https://www.popsci.com/?p=570030
Heat pump outside building
Even in extremely cold climates, heat pumps outperformed three times better than traditional gas and oil installations. Deposit Photos

Even more evidence points to heat pumps being superior alternatives to traditional heating systems.

The post Heat pumps still get the job done in extreme cold appeared first on Popular Science.

]]>
Heat pump outside building
Even in extremely cold climates, heat pumps outperformed three times better than traditional gas and oil installations. Deposit Photos

Despite ample evidence to the contrary, heat pumps are still considered by some to be inferior to traditional gas and fossil fuel installations. A new study published on September 11 in Joule, however, offers even more credence to adopting the eco-friendly alternative, while also debunking some of the more persistent myths surrounding heat pumps. Even in extreme cold environments, heat pumps perform as much as three times better than fossil fuel options, the latest study found.

To understand how heat pumps work, imagine the opposite of a refrigerator—instead of a fridge sucking up its ambient interior heat and pumping that outside the container via its compressor, a home’s heat pump sucks in warmth for later use. Heat pumps’ sources generally either come from ambient outside air, or underground, such as via geothermal heat. The principle is largely the same as AC units, which operate on the same principles but in reverse. Either way, a team of Oxford University researchers working alongside the independent think tank, Regulatory Assistance Project, have ample evidence that pumps are much more preferable to pollutant-heavy standards.

[Related: Energy-efficient heat pumps will be required for all new homes in Washington.]

As The Guardian explains, the study aggregated data from seven field studies across the US, Canada, China, Germany, Switzerland, the UK. After analyzing the numbers, the team found that heat pumps operated two-to-three times more efficiently than gas and oil heaters at below zero temperatures. According to the findings, this makes heat pumps perfectly suited—if not superior—for homes across the globe, including in Europe and the UK.

Speaking with Canary Media, Duncan Gibb, study co-author and a senior advisor at the Regulatory Assistance Project, argued that the study supports their belief that “there are very few—if any—technical conditions where a heat pump is not suitable based on the climate,” at least in Europe.

That’s not to say that consumers wouldn’t benefit from switching to heat pumps in the US—far from it, actually. According to the team’s field studies, even some of the nation’s coldest regions in Alaska and Maine still offered more efficient heat pump performance than fossil fuel counterparts. Extrapolate that to the country’s generally warmer areas, and heat pumps generate even more bang for their buck.

The new information presents a stark counter to recent dismissals of the technology, which are often financed by those with vested interests in the fossil fuel industry. “Even though heat pump efficiency declines during the extreme cold and back-up heating may be required, air-source heat pumps can still provide significant energy system efficiency benefits on an instantaneous and annual basis compared with alternatives,” the study’s authors argue in the paper’s introduction. And from their new data, they have the numbers to prove it.

The post Heat pumps still get the job done in extreme cold appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
This alternative to lithium-based batteries could help store renewable energy https://www.popsci.com/technology/zinc-bromine-battery/ Wed, 06 Sep 2023 22:00:00 +0000 https://www.popsci.com/?p=568372
Closeup of solar panel installation
Zinc-bromine batteries could one day store the nation's renewable energy reserves. Deposit Photos

The Department of Energy is investing $500 million in zinc-bromine battery manufacturing.

The post This alternative to lithium-based batteries could help store renewable energy appeared first on Popular Science.

]]>
Closeup of solar panel installation
Zinc-bromine batteries could one day store the nation's renewable energy reserves. Deposit Photos

The Department of Energy is providing a nearly $400 million loan to a startup aimed at scaling the manufacturing and deployment of a zinc-based alternative to rechargeable lithium batteries. If realized, Eos Energy’s utility- and industrial-scale zinc-bromine battery energy storage system (BESS) could provide cheaper, vastly more sustainable options for the country’s burgeoning renewable power infrastructure.

According to the DOE’s recent announcement, Eos Energy’s project could annually produce as much as 8 gigawatt hours (GWh) of storage capacity by 2026—enough to instantly power over 300,000 US homes, or meet around 130,000 homes’ annual electricity requirements.

Because renewable sources like wind and solar produce power intermittently, storage solutions are necessary to house the energy for later use. For years, lithium battery systems’ prices have decreased as their efficiencies increased, but the metal’s comparative rarity presents a challenging hurdle for scaling green energy infrastructure.

[Related: How an innovative battery system in the Bronx will help charge up NYC’s grid]

Unlike lithium-ion and lithium iron phosphate batteries, alternatives such as the Eos Z3 design rely on zinc-based cathodes alongside a water-based electrolyte, notes MIT Technology Review. This important distinction both increases their stability, as well as makes it incredibly difficult for them to support combustion. Zinc-bromine batteries meanwhile also boast lifespans as long as 20 years, while existing lithium options only manage between 10 and 15 years. What’s more, zinc is considered the world’s fourth most produced metal.

Per MIT, Eos’s semi-autonomous facility in Pennsylvania currently produces around 540 megawatt-hours annually, although it doesn’t operate at full capacity. The DOE’s conditional commitment loan—disbursed only after certain financial, technical, and other operating stipulations are met—could boost the Eos’ factory towards full-power.

[Related: How the massive ‘flow battery’ coming to an Army facility in Colorado will work]

“Today’s energy storage market is nascent but rapidly growing and is dominated by lithium-ion and lithium iron phosphate battery technologies, which typically serve short-term duration applications (approximately 4 hours),” the DOE explained in its announcement. “… Eos’s technology is also specifically designed for long-duration grid-scale stationary battery storage that can assist in meeting the energy grids’ growing demand with increasing amounts of renewable energy penetration.”

The DOE also notes that “over time,” Eos expects to source almost all of its materials within the US, thus better insulating its product against the market volatility and supply chain issues. While the DOE previously issued similar loans to battery recycling and geothermal energy projects, last week’s announcement marks the first funding offered to a manufacturer of lithium-battery alternatives.

The post This alternative to lithium-based batteries could help store renewable energy appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
What’s the most sustainable way to mine the largest known lithium deposit in the world? https://www.popsci.com/environment/lithium-mining-mcdermitt-caldera/ Wed, 30 Aug 2023 20:30:00 +0000 https://www.popsci.com/?p=567117
Lithium samples from the proposed Thacker Pass mining site in the McDermitt Caldera lithium deposit
The clay mixture from which lithium would be extracted if a mine were to be permitted in Nevada's Thacker Pass. Carolyn Cole / Los Angeles Times via Getty Images

The McDermitt Caldera in Nevada and Oregon could hold up to 100 megatons of lithium. Now companies are proposing a new method for mining it.

The post What’s the most sustainable way to mine the largest known lithium deposit in the world? appeared first on Popular Science.

]]>
Lithium samples from the proposed Thacker Pass mining site in the McDermitt Caldera lithium deposit
The clay mixture from which lithium would be extracted if a mine were to be permitted in Nevada's Thacker Pass. Carolyn Cole / Los Angeles Times via Getty Images

At first glance, the McDermitt Caldera might feel like the edge of the Earth. This oblong maze of rocky vales straddles the arid Nevada-Oregon borderlands, in one of the least densely populated parts of North America. 

But the future of the modern world depends on the future of places like the McDermitt Caldera, which has the potential to be the largest known source of lithium on the planet. Where today’s world runs on hydrocarbons, tomorrow’s may very well rely on the element for an expanding offering of lithium-ion batteries. The flaky silver metal is a necessity for these batteries that we already use, and which we’ll likely use in far greater numbers to support mobile phones, electric cars, and large electric grids.

Which is why it matters a ton where we get our lithium from. A new study, published in the journal Science Advances today, suggests that McDermitt Caldera contains even more lithium than previously thought and outlines how the yet-to-be-discovered stores could be extracted. But these results are unlikely to ease the criticisms about the environmental costs of mining the substance.

[Related: Why solid state batteries are the next frontier for EV makers]

By 2030, the world may require more than a megaton of lithium every year. If previous geological surveys are correct, then the McDermitt Caldera—the remnants of a 16-million-old volcanic supereruption—could contain as many as 100 megatons of the metal

“It’s a huge, massive feature that has a lot of lithium in it,” Tom Benson, one of the authors of the new paper and a volcanologist at Columbia University and the Lithium Americas Corporation.

One high-profile project, partly run by Lithium Americas Corporation, proposes a 17,933-acre mine in the Thacker Pass, on the Nevada side of the border at the caldera’s southern edge. The project is contentious: Thacker Pass (or Peehee Mu’huh in Northern Paiute) sits on land that many local Indigenous groups consider sacred. Native American activists are continuing to fight a plan to expand the mine-exploration area in court. 

But not all of the lithium under McDermitt’s rocky sands ranks the same. Most of the desired metal there comes in the form of a mineral called smectite; under certain conditions, smectite can transform into a different mineral called illite that can sometimes also be processed for lithium. Benson and his colleagues studied samples of both smectite and illite drilled from the ground throughout the caldera. “There’s lithium everywhere you drill,” he says. 

Previously, geologists assumed that you could find both smectite and illite in a wide distribution across the caldera, but the authors only found the latter in high concentrations in the caldera’s south, around Thacker Pass. “It’s constrained to this area,” explains Benson.

McDermitt Caldera map with colored dots for lithium mining assays
Benson et al. (2023)

That’s important. Benson and colleagues think that the caldera’s illite formed when lithium-rich fluid, heated by the underlying volcano, washed over smectite. In the process, the mineral absorbed much of the lithium. Consequently, they project the illite in Thacker Pass holds more than twice as much lithium than the neighboring smectite.

“That’s really helpful to change exploration strategy,” Benson says. “Now we know we have to stick in the Thacker Pass area if we want to find and mine that illite.”

Some of Thacker Pass’s proponents believe that would result in fewer costs and less damage from mining. Anyone who deals with lithium is, on some level, aware of the environmental costs. The recovery process produces pollutants like heavy metals, sucks up water, and emits tons of greenhouse gases. By one estimate, fitting a new electric vehicle with its lithium battery can result in upwards of 70 percent more carbon emissions than building an equivalent petrol-powered car (although the average electric car will more than make up the difference with day-to-day use).

That said, not all extraction is the same. There are two main types of lithium sources: brine recovery and hard-rock mining. Some of the lithium we use comes from super salty pools. Over millions of years, rainwater percolates through lithium-containing rocks, dissolves the metal, and carries it to underground aquifers. Today, humans pump brine to the surface, evaporate the water, add a slurry of hydrated lime to keep out unwanted metals, and extract the lithium that’s left behind. Much of the world’s brine lithium today comes from the “lithium triangle” of Argentina, Bolivia, and Chile—one of the world’s driest regions.

Alternatively, we can directly mine lithium ores from the earth and process them as we would with most other metals. Separating lithium from ore typically involves crushing the rock and heating it up to temperatures of more than 1,000 degrees Fahrenheit. Getting to those high temperatures often requires fossil fuels in the first place. This method is less laborious and costly than brine extraction, but also far more carbon-intensive.

[Related: Inside the high-powered process that could recycle rare earth metals]

McDermitt Caldera’s smectite and illite belong to what some lithium watchers see as a new third category of extraction: volcanic sedimentary lithium. When volcanic minerals containing lithium flow into nearby valleys  and react with the loose dirt, they leave behind lithium-rich sediments that require little energy and processing to separate.

With the new alternative, mining proponents claim they can drastically reduce the environmental impact of their current and future activities at Thacker Pass. And the research by Benson’s team seems to suggest that, if lithium companies probe in the right places, they might get rewarded more for their efforts.

But this is likely little comfort to lithium-mining opponents in Oregon and Nevada, whose criticisms will be considered as the Bureau of Land Management maps out drilling in the deposit. Their case parallels those of Indigenous Chileans who oppose lithium extraction near their homes in the Atacama and locals fighting a lithium mining project near Portugal’s northern border. Together, they’re fighting a world that’s growing hungrier for lithium, along with new ways and places to exploit it.

The post What’s the most sustainable way to mine the largest known lithium deposit in the world? appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
A high-speed rail line in California is chugging along towards 2030 debut https://www.popsci.com/technology/california-high-speed-rail-design/ Wed, 30 Aug 2023 14:00:00 +0000 https://www.popsci.com/?p=566894
California high speed railcar concept art
The proposed railway would travel over 200 mph. California High-Speed Rail Authority

The state's High-Speed Rail Authority will soon begin accepting proposals from electric train manufacturers ahead of a proposed 2030 debut.

The post A high-speed rail line in California is chugging along towards 2030 debut appeared first on Popular Science.

]]>
California high speed railcar concept art
The proposed railway would travel over 200 mph. California High-Speed Rail Authority

California authorities will begin accepting electric train manufacturers’ Request for Qualifications  proposals (RFQs) by the end of the year, the latest stage of the state’s long-gestating, high-speed rail line. Although voters approved initial funding back in 2008, the decades’ long project has since encountered repeated setbacks and financial issues. Construction sites finally began making headway in 2015, and nearly 422 miles between the Los Angeles Basin and the Bay Area have since been “environmentally cleared for the project,” the Los Angeles Times recently reported.

Once selected and constructed, the high-speed trains would be tested at maximum speed of 242 mph while traversing a 171-mile starter segment connecting Central Valley’s Bakersfield and Merced. Rail authorities will select the final manufacturer during the first quarter of 2024, with an eye to debut a pair of functioning prototypes by 2028 for trials. According to the High-Speed Rail Authority’s announcement, whoever is chosen to provide the train cars will also agree to oversee train set maintenance for 30 years.

[Related: Texas could get a 205-mph bullet train zipping between Houston and Dallas.]

In a statement, Board Chair Tom Richards described the latest phase “allows us to deliver on our commitment to meet our federal grant timelines to start testing,” adding that, “This is an important milestone for us to deliver high-speed rail service in the Central Valley and eventually into Northern and Southern California.”

California’s high speed rail project is one of several in development across the US, each facing their own logistical and funding issues. Earlier this month, Amtrak announced a partnership with Texas Central to begin seeking grants for a bullet train line that could travel between Houston and Dallas in under 90 minutes. Similar high-speed train routes are underway to connect Las Vegas and Los Angeles, as well as San Francisco and LA. Both of those projects have also encountered significant delays. Such projects could greatly help transition the US towards greener public transport methods—Amtrak’s proposed Texas project, for example, could save as much as 65 million gallons of fuel per year, cut greenhouse gas emissions by over 100,000 tons annually, and remove an estimated 12,500 cars per day from the region’s I-45 corridor.

Over 30 construction sites along Central Valley’s high-speed railway are currently active. Although backers hope the project will begin public service by the end of the decade, a recent progress report notes delays could push completion as far as 2033.

The post A high-speed rail line in California is chugging along towards 2030 debut appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
We can’t ignore that offshore wind farms are part of marine ecosystems https://www.popsci.com/environment/offshore-wind-marine-ecosystems/ Fri, 25 Aug 2023 01:00:00 +0000 https://www.popsci.com/?p=564280
Offshore wind turbines
Scientists have a lot more work to do before they can know the true effect of thousands of offshore wind turbines, as well as how and where they should be built. DepositPhotos

Offshore wind farms can create their own local climates and may alter currents. How does that affect marine life around them?

The post We can’t ignore that offshore wind farms are part of marine ecosystems appeared first on Popular Science.

]]>
Offshore wind turbines
Scientists have a lot more work to do before they can know the true effect of thousands of offshore wind turbines, as well as how and where they should be built. DepositPhotos

This article was originally published on Undark. Read the original article.

Last year, the Biden administration announced an ambitious goal: enough offshore wind to power 10 million homes by 2030. The move would reduce carbon emissions, create jobs, and strengthen energy security. It would also help the United States—which was responsible for just 0.1 percent of the world’s offshore wind capacity last year—catch up with renewable energy leaders like China and Europe.

The plan is already well underway: Massive turbines are rising off the coast of Massachusetts, and more projects are planned up and down the U.S. coastlines. Advocates say these turbines, and other offshore projects around the world, are a crucial tool in minimizing the effects of climate change: The technology is touted as clean, renewable, and plentiful. And, since offshore wind farms aren’t located in anyone’s backyard, they are, at least in theory, less prone to the political pushback onshore wind power has faced.

It will take a lot of turbines to meet Biden’s 2030 goal, and while wind turbines don’t use fossil fuels or generate carbon emissions, they are enormous structures, with some reaching heights of more than 850 feet above the water’s surface. (The Statue of Liberty, in comparison, stands a little over 300 feet.) As such, they will likely have some effect on the ocean environment.

Scientists already know some of the local impacts of wind farms. For example, they can, somewhat counterintuitively, reduce local wind speed. They also create their own local climates, and cause disturbances in the water in the form of a downwind wake. But what those changes might mean for marine life or for industries that depend on ocean resources is something that scientists are still trying to figure out.

Meanwhile, in the U.S., offshore wind has become the subject of bitter political disagreement and fear, fueling lobbying and lawsuits aimed at halting projects before they even begin. As researchers work to model potential outcomes, they stress that they don’t want to derail offshore wind, but rather seek to better understand it so that any negative effects can be minimized, and positive effects maximized.

Scientists have a lot more work to do before they can know the true effect of thousands of offshore wind turbines, as well as how and where they should be built. There may even be questions they haven’t thought to ask yet, said Ute Daewel, a scientist who studies marine ecosystems at The Helmholtz-Zentrum Hereon in Germany.

“It’s so complex,” she said, “that I sometimes think we probably also miss a lot of things that might happen.”


Advocates of offshore wind turbines can point to a range of benefits—starting with their proximity to the places most in need of clean energy. Around 40 percent of the world’s population lives within 60 miles of the ocean. Energy demand in densely populated coastal regions tends to be high, so offshore wind farms will be located close to where they are most needed.

Evidence suggests offshore wind power could lower energy costs, especially during extreme events like cold snaps when energy demands are high and wholesale prices peak. Meanwhile, the Department of Energy says that, in addition to reducing carbon emissions, the technology would improve human health by cutting air pollution from fossil fuels.

But wind farms have also come under intense criticism from a diverse coalition of stakeholders, including conservation nonprofits worried about the impact on marine ecosystems, fishing industry groups concerned about access to traditional fishing grounds, coastal homeowners keen to maintain their views, and groups that appear to be funded by large oil companies hoping to stifle competition.

Some of those criticisms focus on the impact on animals. Like onshore wind, the turbines can kill birds, though some researchers studying large-bodied waterbirds like sea ducks and geese have found they tend to avoid the turbines, which may mean less bird mortality offshore. Recent criticism from Republican lawmakers also suggests that the noise from offshore wind turbines might kill whales, although the National Oceanic and Atmospheric Administration says there’s no evidence to back up this concern.

Meanwhile, some research suggests wind farms might even help fish and other marine life. “A lot of people say, hey, this is going to be a habitat improvement because there’s going to be rocks on the bottom, which make artificial reefs,” said Daphne Munroe, a shellfish ecologist at Rutgers University. “And that’s absolutely true. But it’s a shift away from what was there.”

Munroe studies pressures on marine ecosystems, including the effects of climate, pollution, and resource exploitation. She’s also the lead author of a 2022 Bureau of Ocean Energy Management study on the impacts of offshore wind on surfclams—a type of clam commonly used to make chowders, soups, and stews. (The BOEM study was funded by the federal agency; Munroe has received funding from wind farm developers to conduct other projects.)

The fishing industry fears wind farms will affect their ability to yield a profitable catch — especially since the windy, shallow waters that support a rich diversity of sea life also tend to be ideal locations for turbines. Some scientists say these fears have been overblown—a 2022 study, for example, concluded that the Block Island Wind Farm located off the coast of Rhode Island does not appear to negatively impact bottom-dwelling fish. (Coastal regulators in the state of Rhode Island mandated the study be conducted and paid for by wind farm developers.) Others, like Munroe, say specific fisheries such as Atlantic surfclams will be significantly affected.

Surfclam fishing in wind farm areas, said Munroe, is logistically difficult, if not impossible, since vessels use dredges that drag though the sand to collect the clams. The presence of power cables on the ocean floor, she said, would make it too dangerous to use this kind of equipment around wind farms.

Installed boulders surrounding turbine foundations will also create obstacles, according to Munroe. “Each of the foundations is going to have what’s called scour protection,” she said. “So basically, big boulder fields that are going to be placed around the base of the turbine foundation in order to prevent the sand from scouring away.”

Currently, there are no legal restrictions on fishing in windfarm areas, Munroe said, just physical ones. “They could still get out there, but in order to fish efficiently and be able to get the catch they need and get back to the dock in a reasonable amount of time, it just wouldn’t be feasible,” she said. In her 2022 study, Munroe and her co-authors concluded that the presence of large offshore wind farms could cause fleet revenues to decline by up to 14 percent in some areas.

The industry has also been vocal about other consequences, such as habitat destruction and the possibility that the turbines’ sound might affect fish populations. In Maine, lobstermen worry that heavy mooring lines will drive their catch away. In Massachusetts, groups that represent fishing interests have filed lawsuits against the Bureau of Ocean Energy Management on the grounds that the agency failed to consider the fishing industry when it approved the 62-turbine Vineyard Wind project.

“The Bureau made limited efforts to review commercial fishing impacts,” wrote the plaintiffs in one of the Vineyard Wind lawsuits. “The limited effort that was made focused almost solely on impacts to the State of Massachusetts and on the scallop fishery, despite other fisheries being more active in the lease areas.”


Physical changes to the ecosystem, such as the placement of turbine foundations and scour protection, are some of the more obvious impacts of offshore wind turbines. But wind farms might elicit more subtle changes in local weather, affecting wind patterns and water currents, which models predict could reverberate through the food chain.

A 2023 study led by oceanographer Kaustubha Raghukumar, for example, found that turbine-driven alterations in wind speed could produce changes in ocean upwelling—a natural process where cold water from the deeper parts of the ocean rises to the surface—“outside the bounds of natural variability.” Those cold waters contain nutrients that support phytoplankton, the single-celled plants and other tiny organisms that form the basis of the oceanic food chain. Shifts in upwelling could have an impact on phytoplankton—although those impacts are still in question, particularly as climate change alters the equation.

Raghukumar and his colleagues at Integral, an environmental consulting company, based their predictions off historical data. But such an approach might not create an accurate picture of what will happen in the future as some scientists predict warmer global temperatures will produce stronger winds and increased upwelling, while others foresee localized decreases in upwelling. In their 2023 paper, which was funded by the California Energy Commission and the Ocean Protection Council, the authors noted that wind farms might reinforce—or even counteract—some of these climate change-driven changes in upwelling, but that all remains uncertain.

While Raghukumar’s study didn’t model how changes in upwelling might affect marine life, other scientists are closely studying possible changes to the ecosystem, though these are also likely to be complex and difficult to predict. A 2022 paper modeled the effect that planned wind farms might have in the North Sea, off the coasts of the U.K. and Norway, and concluded that they could influence phytoplankton, which could alter the food web.

Daewel, the study’s lead author, stopped short of drawing conclusions about what these changes might mean for the ecosystem as a whole. “We cannot say if that’s really a bad thing or a good thing because the ecosystem is very dynamic, especially in the North Sea,” she said.

Changes to ocean processes could impact fish survival, but, again, no one is really sure how. “Young fish need to be in a specific area at a specific time to find the right types of prey,” said Daewel. “So this redistribution of ecosystem parameters, that could mean that there might be a mismatch, or a better match also, for fishery life stages. But this is purely hypothetical.”

With or without wind farms, climate change is already altering the timing of critical ecosystem processes, said Robert Dorrell, lead author of a 2022 paper that investigated the effects of offshore wind on seasonally stratified shelf seas—coastal regions where water separates during the spring into different layers, with warm water at the top and colder water at the bottom. Shelf seas only represent about 8 percent of the ocean, but the phytoplankton that bloom there generate an estimated 15 to 30 percent of the organic matter that forms the basis of the food web.

In seasonally stratified shelf seas, phytoplankton grow in the upper layers, using up nutrients but also creating a food source for a myriad of marine animals. When the bloom is over, ocean mixing, a natural process driven by wind and waves, helps bring oxygen to the bottom layers and nutrients to the top, ensuring that creatures at every level can thrive. But climate change is expected to increase ocean stratification, which interferes with natural ocean mixing.

“When you have cold water underneath, which is of a higher density, that density difference makes it harder in general to mix water vertically, upwards or downwards,” said Dorrell.

Dorrell and his co-authors believe that wind farms could provide a partial solution to this problem by introducing artificial mixing of stratified shelf seas. This process, Dorrell said, is a little like stirring a cup of French coffee. “We have a nice coffee on the bottom and then you have foamy milk on the top. And if you would get a spoon and stir your French coffee you would mix the light milk up with the heavier coffee below.”

In much the same way, the downwind wake generated by an offshore turbine could help mix the warm and cold layers of water, which might help offset some of the effects of climate change.


Fortunately, scientists like Dorrell say, there is time to figure out the more subtle nuances of offshore wind and its larger effects on the marine ecosystem. “I think what we have to remember with offshore wind is that although there are plans underway at the moment, they are long-term plans,” he said. “In the U.K., for example, there are targets for 2030 certainly, but there are targets all the way through to 2050 and beyond. And there’s certainly time there for research to inform and support and maximize the best delivery of offshore wind for the benefit of everybody.”

Daewel added that papers like hers, which might suggest potential problems, aren’t an argument against wind farms. Instead, they are a call to closely monitor existing wind farms and those that will be built in the future. “I think that’s kind of the rule here, to be cautious and make sure that you understand what’s happening to your system while you’re building,” she said.

It’s possible that the way wind farms are built and where they are placed might help reduce potential negative impacts on the ocean ecosystem, though that research has yet to be done. “I think it will be a really interesting optimization kind of study, to kind of place the turbines in different locations and different densities,” said Raghukumar. The information gleaned from such a study, he said, could be used to balance the benefits of wind energy against any adverse consequences.

As research into the impacts of offshore wind energy continues, scientists say it’s important to maintain a sense of perspective, since fossil fuels also affect the ocean by driving changes to the climate.

“It’s not our intention to say this is a negative development. It’s also not our intention to say wind parks destroy the ecosystem. That’s not what our research shows,” Daewel said. “I just want to stress the research shows that we need to expect changes, and it’s better to learn that as soon as possible.”


Becki Robins is a freelance writer who lives with her family in rural Northern California. She writes about science, nature, history, and travel; her favorite stories include a little of all four. Her work has appeared in Science News, Comstock’s Magazine, Hakai Magazine, and others.

This article was originally published on Undark. Read the original article.

Renewables photo

The post We can’t ignore that offshore wind farms are part of marine ecosystems appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
A cargo ship with 123-foot ‘WindWing’ sails has just departed on its maiden voyage https://www.popsci.com/technology/cargo-ship-wind-wings/ Mon, 21 Aug 2023 18:30:00 +0000 https://www.popsci.com/?p=564098
Pyxis Ocean retrofitted with WindWings setting sail for its maiden voyage, August 2023
The giant sails could reduce CO2 emissions by as much as 30 percent. Cargill

Retrofitted with 123-foot ‘WindWings,' 'Pyxis Ocean' is testing two giant sails on its six-week journey from China to Brazil.

The post A cargo ship with 123-foot ‘WindWing’ sails has just departed on its maiden voyage appeared first on Popular Science.

]]>
Pyxis Ocean retrofitted with WindWings setting sail for its maiden voyage, August 2023
The giant sails could reduce CO2 emissions by as much as 30 percent. Cargill

A massive cargo ship retrofitted with a pair of nearly 125-foot-tall “wing sails” has set out on its maiden voyage, potentially providing a new template for wind-powered ocean liners. Chartered by shipping firm Cargill, the Pyxis Ocean’s journey will take it from China to Brazil in a test of its two, rigid “WindWings” constructed from the same material as wind turbines. According to the BBC on Monday, the design harkening back to traditional boat propulsion methods could reduce the vessel’s lifetime emissions by as much as 30 percent.

Per an official announcement on August 21, Pyxis Ocean’s WindWings can save 1.5 tonnes of fuel per wing, per day. Combined with alternative fuel sources, that number could rise. During its estimated six week travels, the cargo ship’s sails will be closely monitored in the hopes of scaling the technology across both Cargill’s fleet, as well as the larger shipping industry. Speaking with BBC, one project collaborator estimated a ship using four such wings could save as much as 20 tonnes of CO2 every day.

[Related: These massive, wing-like ‘sails’ could add wind power to cargo ships.]

“Wind is a near marginal cost-free fuel and the opportunity for reducing emissions, alongside significant efficiency gains in vessel operating costs, is substantial,” explained John Cooper, CEO of project collaborator, BAR Technologies.

In addition to being a zero emission propulsion source, wind power is both a non-depleting resource as well as predictable. Such factors could prove extremely promising in an industry responsible for around 2-3 percent of the world’s CO2 emissions—around 837 million tonnes of CO2 per year. Less than 100 cargo ships currently utilize some form of wind-assisted technology, a fraction of the over 110,000 operational vessels throughout the world. Depending on Pyxis Ocean’s performance, the massive WindWings could help spur increased green tech retrofitting, as well as new builds already coming equipped with the proper systems.

Renewables photo

Elsewhere, similar wind-based vessel projects are already underway. Earlier this year, the Swedish company Oceanbird began construction on a set of 40-meter high, 200 metric ton sails to be retrofitted on the 14-year-old car carrier, Wallenius Tirranna. According to the trade publication Offshore Energy, one of Oceanbird’s sails could cut down emissions by 10 percent, saving around 675,000 liters of diesel per year.

“The maritime industry is on a journey to decarbonize—it’s not an easy one, but it is an exciting one,” said Jan Bieleman, president of Cargill’s ocean transportation business.

The post A cargo ship with 123-foot ‘WindWing’ sails has just departed on its maiden voyage appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Texas could get a 205-mph bullet train zipping between Houston and Dallas https://www.popsci.com/technology/amtrak-bullet-train-texas/ Thu, 10 Aug 2023 20:00:00 +0000 https://www.popsci.com/?p=562365
Japanese bullet train leaving station at dawn
Japan's bullet trains could finally be coming to America. Deposit Photos

The proposed electric railway line could travel 240 miles in under 90 minutes for over 6 million passengers per year.

The post Texas could get a 205-mph bullet train zipping between Houston and Dallas appeared first on Popular Science.

]]>
Japanese bullet train leaving station at dawn
Japan's bullet trains could finally be coming to America. Deposit Photos

A new high-speed railway system inspired by Japanese bullet trains could someday carry commuters between Houston and Dallas in under 90 minutes. Announced on Wednesday, the partnership between Amtrak and a company called Texas Central aims to connect the two cities by train, spanning roughly 240 miles at speeds upwards of 205 mph.

According to Quartz, the applications have already been submitted to “several federal grant programs” to help finance research and design costs. Amtrak representatives estimate the project could reduce greenhouse gas emissions by over 100,000 tons annually and remove an estimated 12,500 cars per day from the region’s I-45 corridor. The reduction in individual vehicles on the roads could also save as much as 65 million gallons of fuel each year.

[Related: High-speed rail trains are stalled in the US—and that might not change for a while.]

The trains traveling Amtrak’s Dallas-Houston route would be based on Japan’s updated N700S Series Shinkansen “bullet train,” a design that first debuted in 2020. Bullet trains have operated in Japan for over half a century, and are now completely electric, as well as lighter and quieter than traditional railcars. Additionally, the transportation method generates just one-sixth the amount of carbon-per-passenger mile than a standard commercial jet, according to Texas Central’s descriptions.

“This high-speed train, using advanced, proven Shinkansen technology, has the opportunity to revolutionize rail travel in the southern US,” Texas Central CEO Michael Bui said via the August 9 announcement.

[Related: A brief, buttery ride on Shanghai’s maglev train.]

American city planners have been drawn to the idea of high-speed railways for decades, but have repeatedly fallen short of getting them truly on track due to a host of issues, including funding, political pushback, and cultural hurdles. That said, 85 percent of recently surveyed travelers between Dallas and the greater North Texas area indicated they would ride such a form of transportation “in the right circumstances.” If so, as many as 6 million travelers could be expected to ride the train by the end of the decade, with the number rising to 13 million by 2050. Similar high-speed projects are also in the works to connect San Francisco and Los Angeles (though no track has actually been installed yet), as well as another that hopes to connect LA and Las Vegas, although repeated setbacks have delayed such endeavors.

“The US is really a very auto-centric country,” Ian Rainey, a senior vice president at Northeast Maglev, told PopSci in 2022. “… If you can get that sweet spot of big populations that are 100 to 300 miles apart from each other, I think you’ve got a winner for high-speed rail.” 

The post Texas could get a 205-mph bullet train zipping between Houston and Dallas appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Solar power helps keep Europe’s grid reliable in historic heat https://www.popsci.com/technology/solar-power-europe-heat/ Tue, 08 Aug 2023 17:00:00 +0000 https://www.popsci.com/?p=561878
Aerial view of solar panel farm
Solar power is getting countries like Spain and Greece through the hottest months of the year. Deposit Photos

Sicily's solar power reserves provided over half of the excess demand on July 24.

The post Solar power helps keep Europe’s grid reliable in historic heat appeared first on Popular Science.

]]>
Aerial view of solar panel farm
Solar power is getting countries like Spain and Greece through the hottest months of the year. Deposit Photos

Solar power is getting its literal and figurative moment in the sun as much of the world is beset by unprecedented, deadly heat waves—thus requiring reliable energy sources to help keep things cool. According to Reuters on Monday, European countries in particular are experiencing the benefits of the robust, rapidly growing green energy infrastructure.

On July 24, for example, Sicily’s stifling temperatures topped 102 degrees Fahrenheit. The region’s solar grid, however, ensured the cooling demands could be met via providing over half of the excess demand totaling around 1.3 GW, per data from financial and infrastructure data provider, Refinitiv. This reliability was bolstered by the major increase year-to-year in the amount of solar energy comprising Spain’s entire electricity output—up from just 16 percent in 2022 to nearly a quarter of the nation’s energy production this year, reports Reuters.

“Without the additional solar, the system stability impact would have turned out much worse,” said power analyst Nathalie Gerl.

That same day, Greece’s solar photovoltaic infrastructure covered roughly a third of the nation’s 10.35 GW demand. Meanwhile, solar power has handled the entirety of Belgium’s additional energy demands during midday spikes—typically the time when temperatures are at their highest.

[Related: July’s extreme heat waves ‘virtually impossible’ without climate change.]

The US has yet to reach such a solar stride. According to the US Energy Information Administration (EIA), an independent statistics and analysis group, solar generation composed just three percent of all US electricity in 2020. At this pace, the EIA estimates one-fifth of US energy will come from solar infrastructure by midcentury.

The Biden administration has loftier goals. In 2021, the Department of Energy’s Solar Futures Study indicated that solar energy has the potential to support 40 percent of US electricity consumption while employing roughly 1.5 million people, all without raising consumers’ electricity costs. Such aims are vital as dire climatic events become the new norm for vast portions of the globe.

Regardless, solar grids and their accompanying wind energy arrays grew at their fastest rate in US history last year, for a combined total of 13 percent of all the country’s power, according to USA Today. “Ten years ago that would have been unfathomable. Six years ago, people would have been incredulous,” Dan Whitten, vice president for public affairs at the Solar Energy Industries Association, said at the time.

The post Solar power helps keep Europe’s grid reliable in historic heat appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The world’s first hydrogen-powered train has made its final stop https://www.popsci.com/technology/hydrogen-train-germany/ Tue, 08 Aug 2023 16:00:00 +0000 https://www.popsci.com/?p=561860
Hannover train station
Hydrogen fuel-cell trains were found to be 80 percent more expensive than battery-powered alternatives. Christophe Gateau/picture alliance via Getty Images

But Germany is still focused on getting battery electric trains on track.

The post The world’s first hydrogen-powered train has made its final stop appeared first on Popular Science.

]]>
Hannover train station
Hydrogen fuel-cell trains were found to be 80 percent more expensive than battery-powered alternatives. Christophe Gateau/picture alliance via Getty Images

Germany’s state-owned, $85 million hydrogen fuel-cell powered train system is shuttering almost exactly one year after its first public debute in August 2022. This doesn’t mean that the railways are reverting back to pollutant-spewing diesel engines, however. According to the country’s Ministry for Economic Affairs, Transport, Building and Digitisation, the lines will transition to electric battery-driven systems that are simply “cheaper to operate.”

As Quartz noted on Monday, Germany’s LVNG railway company first started planning diesel train phaseways all the way back in 2012, and began testing hydrogen fuel-cell trains in 2018. For years, the transition process in the Lower Saxony region was plagued by delays and logistical issues, such as retrofitting existing trains with the proper hardware and software.

At the time of its official rollout in August 2022, Stephan Weil, Minister-President of Lower Saxony, declared the project to be a “role model worldwide [and] an excellent example of a successful transformation made in Lower Saxony.” Weil added that, “As a country of renewable energies, we are thus setting a milestone on the way to climate neutrality in the transport sector.” By the end of the year, however, a state-commissioned study determined that hydrogen trains could be as much as 80 percent more expensive than other electric options. Last week, LVNG finally pulled the plug on its hydrogen fuel-cell plans.

[Related: Hydrogen-powered flight is closer to takeoff than ever.]

Germany is still moving aggressively to address these issues while also attempting to maintain its goal to phase out all diesel trains by 2037. By decade’s end, for example, Lower Saxony officials plan to introduce 102 battery-electric trains alongside another 27 lines powered by catenary systems—overhead electricity lines that allow for constant power.

It’s unclear if or how Germany’s shift in railway plans could affect the many other hydrogen fuel-cell train projects across the world. Last year, for example, California approved over two dozen hydrogen trains, while Italy earmarked €300 million ($330 million) to convert many of its diesel trains to hydrogen power.

Other travel industries are also still steadily pushing forward with their own hydrogen plans. Over the summer, two US-based startups have conducted successful test flights of prop airplanes retrofitted to partially run on hydrogen fuel-cells. According to a recent report from the International Council on Clean Transportation, such retrofitted planes could generate as much as one-third less CO2 over its lifetime compared to green alternatives such as “e-kerosene” composed of carbon dioxide, water, and electricity.

The post The world’s first hydrogen-powered train has made its final stop appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Outdated broadband equipment could find new life as EV chargers https://www.popsci.com/technology/bt-telecom-uk-ev-chargers/ Tue, 01 Aug 2023 14:00:00 +0000 https://www.popsci.com/?p=560313
BT Group's green broadband cabinet box
These green broadband hardware housing units are ubiquitous in the UK. Geography Photos/Universal Images Group via Getty Images

To help meet green energy goals, a UK internet provider has a novel idea to retrofit its soon-to-be obsolete hardware.

The post Outdated broadband equipment could find new life as EV chargers appeared first on Popular Science.

]]>
BT Group's green broadband cabinet box
These green broadband hardware housing units are ubiquitous in the UK. Geography Photos/Universal Images Group via Getty Images

A UK-based telecom giant is currently overseeing a massive logistical campaign to decommission its copper-based broadband and phone lines in favor of fiber connections. Doing so, however, will render its estimated 90,000 hefty streetside equipment cabinets obsolete. But instead of simply chucking the large housing units to the curb, the company hopes to upcycle the majority of them to help Britain’s ongoing transition to a greener future.

According to a recent announcement from BT Group, the telecom provider intends to retrofit as many as 60,000 of its ubiquitous, green broadband wiring containers into EV chargers in the coming years. Beginning next month, BT will conduct a slate of technical and commercial tests starting in Northern Ireland, with plans to expand to public trials by the end of the year.

[Related: 8.3 million places in the US still lack broadband internet access.]

“With the ban on sales of internal combustion engine vehicles coming in 2030, and with only around 45,000 public charge points today, the UK needs a massive upgrade to meet the needs of the EV revolution,” Tom Guy, managing director of BT’s innovation department, said in a statement. “The pilots are critical for the team to work through the assessment and establish effective technical, commercial and operational routes to market over the next two years.”

Although UK’s existing streetside EV chargers can be found across the country, the majority are concentrated in urban areas such as London and Birmingham. Last year, the government earmarked roughly £1.6 billion ($2.6 billion) to install at least 235,000 more strategically placed charge points by the decade’s end, although it is currently unclear if any of that funding will reach BT’s project. On BT’s end, there are still many factors to consider for such a sizable undertaking, including accessibility, cabinet locations, local engagement in planning, and funding options.

[Related: Volvo is the latest automaker to hop on the Tesla EV-charging bandwagon.]

As The Next Web notes, however, recent governmental analysis estimates the country is “10 years behind” its intended green energy infrastructure goals, with less than 40 percent of its emissions reductions supported by “proven policies and sufficient funding.” That said, it has made major strides in areas such as reducing reliance on coal—from 40 percent of all energy production in 2012 to just two percent in 2022.

BT’s announcement hopefully will be the first of many similar private company projects aimed at boosting the UK’s green energy transition. “Programs like BT Group’s are an incentive for other businesses and drivers to go electric,” Helen Clarkson, CEO at the non-profit Climate Group, told The Next Web at the time. “But we need the UK government to play its part.”

The post Outdated broadband equipment could find new life as EV chargers appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
7 automakers team up to cover the US and Canada with fast EV chargers https://www.popsci.com/technology/seven-automakers-ev-chargers/ Thu, 27 Jul 2023 16:00:00 +0000 https://www.popsci.com/?p=559465
electric vehicle at charger
Each fast-charging machine costs somewhere between $100,000 to $200,000. DepositPhotos

The earliest stations should come online next summer.

The post 7 automakers team up to cover the US and Canada with fast EV chargers appeared first on Popular Science.

]]>
electric vehicle at charger
Each fast-charging machine costs somewhere between $100,000 to $200,000. DepositPhotos

For some drivers, electric vehicles sound pretty awesome—until it comes down to charging. Range anxiety is a real thing, and while there are around 32,000 fast chargers across the US that can refill your EV’s battery in half an hour or so, that’s still quite small compared to the more than 100,000 gas stations across the US as of 2017. The National Renewable Energy Laboratory (NREL) estimates that there needs to be around 182,000 fast chargers across the country by 2030 to support the 30-42 million predicted EVs on the road.

When it comes to EVs and charging them, Tesla normally makes the biggest headlines, but this time other automakers are stepping up in an Avengers-style move. This week, a coalition of seven automotive companies—BMW Group, General Motors, Honda, Hyundai, Kia, Mercedes-Benz Group, and Stellantis NV—made a commitment to bring 30,000 fast chargers to North America. The first of these should come online by summer 2024, according to their announcement. 

[Related: Electric cars are better for the environment, no matter the power source.]

“To accelerate the shift to electric vehicles, we’re in favor of anything that makes life easier for our customers,” Mercedes-Benz Group CEO Ola Källenius said in the statement. “Charging is an inseparable part of the EV-experience, and this network will be another step to make it as convenient as possible.”

According to Reuters, each fast-charging machine costs somewhere between $100,000 to $200,000, making this endeavor one that could cost billions of dollars. Currently, Tesla has the largest network of fast chargers with 45,000 supercharging locations globally

Some of the companies involved with this new undertaking include companies such as GM and Mercedes that have already signed on to start using Tesla’s charging technology, called the North American Charging Standard (NACS), starting in 2025. The others still have product plans using the Combined Charging System (CCS). The new stations, according to the announcement, will offer charging connectors for both systems. 

The announcement stated that the network “intends” to solely run on renewable energy, but a plan for this has not yet been disclosed. The chargers will be concentrated in urban areas and on highways.

“We think this is an important step forward,” White House press secretary Karine Jean-Pierre told Reuters. President Joe Biden has previously stated goals to bring 500,000 EV chargers online by 2030.

[Related: EV adoption doesn’t lighten energy costs for all American families.]

Currently, the vast majority of EV chargers in the US are “level 2” chargers, which can take anywhere from four to 10 hours to completely charge a vehicle, according to the Washington Post. Owners of EVs frequently have those level-2 chargers installed at their homes. System malfunctions also currently run amok—a recent survey found that one in five EV owners have rolled up to a charger and were then unable to charge due to issues like system malfunctions. 

“We believe that a charging network at scale is vital to protecting freedom of mobility for all, especially as we work to achieve our ambitious carbon neutrality plan,” Stellantis CEO Carlos Tavares said in the statement. “A strong charging network should be available for all.”

The post 7 automakers team up to cover the US and Canada with fast EV chargers appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
An Israeli wind project draws scrutiny on turbines and people’s health https://www.popsci.com/environment/wind-turbines-effects-health/ Wed, 26 Jul 2023 17:07:20 +0000 https://www.popsci.com/?p=559182
Wind turbine with red base in the Golan Heights between Syria and Israel
Wind turbines operate in a wind farm in the Israel-annexed Golan Heights on the the border with Syria. A new wind project has spurred protests among native farmers in the area. Photo by Jalaa Marey/AFP via Getty Images

Wind turbines shouldn't cause health problems—but from the Golan Heights to Illinois, communities are voicing their concerns.

The post An Israeli wind project draws scrutiny on turbines and people’s health appeared first on Popular Science.

]]>
Wind turbine with red base in the Golan Heights between Syria and Israel
Wind turbines operate in a wind farm in the Israel-annexed Golan Heights on the the border with Syria. A new wind project has spurred protests among native farmers in the area. Photo by Jalaa Marey/AFP via Getty Images

Scientists agree that harnessing energy from renewable sources to power our lights, ACs, phones, stoves, and cars will be necessary to slow global warming. But wind farms across the world have increasingly been subject to protest by communities whose land they’ve encroached on. People in small towns across the US have raised concerns at zoning meetings about health issues and depressed property values. An Indigenous group in Norway says a wind farm will affect their ability to herd reindeer, a concern supported by climate activist Greta Thunberg

One of the most common concerns raised by protestors worldwide is how these turbines will affect their health. People say wind projects near their homes, different from the off-shore wind farms at sea, have caused a range of harmful effects on their bodies, including migraines, chronic pain, increased blood pressure, and difficulty sleeping. 

When wind turbines are properly regulated, these problems don’t quite reach the point of a public health concern, says Chris Ollson, an environmental health consultant in Canada who has worked for on minimizing fallout from wind projects for more than a decade. He points to more than a hundred studies that measure the impacts of wind turbines on sleep and other biological responses. 

When wind turbines are properly regulated, problems don’t quite reach the point of a public health concern.

Chris Ollson, environmental health consultant

But regulations don’t always consider important local context. Take the Golan Heights for example, where one of the world’s more contentious wind projects led thousands of Druze farmers to protest in the streets in June. The Golan has been occupied by Israel since 1967 and was annexed in 1981, although international law and every country except the US recognizes it as Syrian land. The state’s relations with the Druze community, most of whom consider themselves Syrian, have been tense—Israeli police responded to the recent demonstrations with force, using teargas, water cannons, and rubber-coated metal bullets.

The chief concern of the protestors is how the wind farm, proposed by the multinational company Energix, would further entrench Israeli occupation over the Golan. But another main concern is how the turbines will affect their health. In the region, regulations must consider context and the circumstances in which the new site would be built, Druze leaders say.

Noise pollution and shadow flicker

The two primary health concerns with wind farms include the level of noise they emit and the flickering lights they create, called “shadow flicker,” Ollson says. Disruptions are created when the three-pronged turbines spin, emulating a slow, giant fan. Typically, governments don’t allow wind farms to send more than 50 decibels of sound to nearby houses, which is about as loud as the hum from a household refrigerator

The noise pollution could prevent those living nearby from sleeping properly. When people can’t rest well for a prolonged period of time, it can reduce their quality of life. They might feel both tired and sick, which could lead to trouble eating and exercising, among other problems, Ollson explains. However, research shows that turbines that hum at less than 45 to 50 decibels don’t have any statistical effect on sleep quality, he adds. 

Ollson points to one 2016 study from Canada that he says is considered the gold standard around the world. The government studied the sleep quality of 720 people who lived between 820 feet to about 7 miles away from a wind farm emitting a range of 20 to 46 decibels of noise. The researchers used actimeters, which are similar to fitbits, to track participants’ sleep quality. The study found no statistical difference between those living near the wind farm and those living a few miles away. “There’s some indication when we go over 55 or 60 decibels that it’s probably too close. But ultimately, we aren’t seeing that in jurisdictions that are [regulated] properly,” Ollson says. 

[Related: The hard truth of building clean solar farms]

It’s unclear exactly how many decibels of sound the Energix wind project would wreak on Majd Al Shams, one of the few remaining Druze towns in the Golan. The farm is expected to be about 3,280 feet away from the neighborhoods, meaning the residents should be safe from noise. But farmers who work near the project would still be exposed—and there are more than 1,800 cottages that people visit regularly on the farming properties a few hundred feet away from the designated site, Wael Tarabieh, a project manager for Al Marsad, says. 

Other major health concerns from living or working around turbines are epileptic seizures, headaches, nausea, and general disturbance from shadow flicker, which occurs when the sun shines through the turbine’s spinning prongs, causing a shadowing effect that can sometimes be seen in homes and buildings. People can simulate shadow flicker by pointing a flashlight at a ceiling or desk fan: The dark shapes created on the wall are similar to what people living near a wind farm might experience, though at a significantly lower rate, given that the fan blades move much faster than a turbine’s does. A near universal standard across the world is limiting shadow flicker to 30 hours per year, Ollson says. This can be done by using computer programs to model conditions and choosing spots for turbines accordingly.

“We can’t find a correlation in these larger epidemiological studies” between shadow flicker and headaches or nausea, Ollson notes. And the turbines move too slowly to cause epileptic seizures, he adds. “What the majority of my colleagues in the field would say, is that shadow flicker isn’t a health concern, but it is an annoyance or nuisance. Imagine you’re sitting in your place tonight, and if I was standing at the wall and turning your lights on and off, in a slow fashion, for 20 minutes at a time. You would not enjoy that.” 

Old Israeli war tank with wind turbines in the background
An Israeli Centurion tank abandoned during 1973 Kipur war, sits on a older wind farm in the Israel-annexed Golan Heights. Jalaa Marey/AFP via Getty Images

But in the Golan, some residents could experience up to one hour of shadow flicker per day during certain times of the year. This is because of the wind farm’s location and use of larger turbine blades, Israeli doctor Ofer Megged told Al Marsad for their 2018 report on the wind farm. The project has been modified several times since then—it’s unclear how many hours of shadow flicker the latest plan would produce.

All forms of energy have their drawbacks, Ollson adds. Oil refineries and coal plants, the main way the world has generated power for the past century, churn out air pollution, which has been linked to a much wider range of health problems, including increased risk of asthma, cancers, and heart disease. 

Winds of change in the Golan Heights

New construction needs to take native people, their history, and their current situation into context, explains Munir Fakher Eldin, an assistant professor and dean of the faculty of arts at Birzeit University in Palestine who writes about land rights. He calls the new wind farm in the Golan, where he is from, a form of greenwashing.

The Golan is known for its wealth of natural resources, such as water, wind, and potentially petroleum. The area is attractive for renewables because of an estimated wind speed almost double that of Israel’s coastal plane, vast open areas, and low population density, according to the Syria Report. Wind energy is a major component of Israel’s net zero goal, and the country plans for nearly half of it to come from the Golan. 

[Related: What companies really mean when they say they’re ‘net-zero’]

The Golan is already home to two wind farms, which are both near Israeli settlements. (Some settlers have also opposed the turbines, according to Tarabieh.) Israel also has plans to build a dozen more wind projects in the Golan to serve locals, both native and non-native. But the Energix project, first proposed in 2018, has received scrutiny from the Druze and become the subject of both protests and lawsuits for the past five years.

After Israel began to occupy the Golan in 1967, they expelled around 131,000 Syrians, which was about 95 percent of the population in the area, according to Al Marsad. Since then, the 1,800 cottages near the wind farm have served as a place for many to escape. “Our agricultural lands are not simply a place to cultivate the land. Actually, they are a kind of extension to our everyday life,” Tarabieh says. “Most of the people escape from [overcrowding in Majd Al-Shams] to the agricultural lands to spend the time with their family. People sleep in these cottages all the time … That’s why in our case, it’s really very dangerous. It’s not that people are afraid of or imagining something. It’s real, and we are all close to it.”

The new project would also subsume a quarter of agricultural land left to farmers, who were already stripped of most of their land more than 50 years ago. Settlements, military facilities, and national park acquisition put 95 percent of the Golan under Israeli control, according to Tarabieh. The wind farm would also limit how much Majd Al-Shams could grow. Mountains in the north, a ceasefire line in the east, and settlements in the west mean that the agricultural land to the south, where the farm is planned, is the only place the town could expand. A new residential zoning code also allows houses to be built much closer to the turbines, which could increase health risks from the wind farm, Tarabieh says.

In our case, it’s really very dangerous. It’s real, and we are all close to it.

Wael Tarabieh, a project manager for Al Marsad

Fakher Eldin and Tarabieh also think the development would affect residents’ psychological health. In a complaint echoed by those living near wind farms around the world, the turbines, which stand at about 680 feet tall, would ruin their land’s pastoral beauty. What’s different in the Golan though, they say, is the wind farm could serve as yet another reminder of how little control the native Syrian communities have over their home. “The land is part of people’s identity and sense of security, belonging, and communal safety,” says Fakher Eldin. “Basically we’re defending our right for reasonable existence on our land … The wind farm will feel like a suffocating presence.”

Update (July 28, 2023): The headline of this story has been changed from “Are wind farms low-key harming people’s health.” The article focuses on health concerns in some communities living around turbines, mainly in the Israel-annexed region the Golan Heights. Scientific reports and experts stress that most of the issues, which are far less severe than health effects stemming from oil refineries and coal plants, can be managed through proper siting and safety regulations. The political context in the Golan Heights, however, makes new wind farms more fraught for native residents.

The post An Israeli wind project draws scrutiny on turbines and people’s health appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Artificial nests could give endangered birds a home near new offshore wind farm https://www.popsci.com/technology/artificial-nest-wind-farm/ Mon, 24 Jul 2023 20:00:00 +0000 https://www.popsci.com/?p=558789
Red7Marine kittiwake offshore wind farm habitat
Three offshore artificial nest towers can each house around 500 birds. Red7Marine

England's Hornsea 3 offshore wind farm is the first to require 'ecological compensation.'

The post Artificial nests could give endangered birds a home near new offshore wind farm appeared first on Popular Science.

]]>
Red7Marine kittiwake offshore wind farm habitat
Three offshore artificial nest towers can each house around 500 birds. Red7Marine

A major offshore wind farm provider has just completed the construction of three massive artificial nesting structures (ANS) along England’s East Coast. The trio of massive bird houses is part of an agreement to protect a local, endangered seabird—the black-legged kittiwake gull. According to an announcement from UK-based marine contractor Red7Marine, each structure can house 500 nests for the gulls. The contractor hopes they will provide researchers with the means to monitor the bird population’s health over the course of the farm’s entire lifespan.

One of wind farms’ central drawbacks are their impacts on local bird populations, particularly the effects of off-shore turbines on vulnerable seabirds. And while climate change undoubtedly remains these species’ biggest existential threat, mitigating these unintended byproducts of green infrastructure expansion is key to ensuring a responsible transition towards a sustainable future.

[Related: When wind turbines kill bats and birds, these scientists want the carcasses.]

That outlook was central to the approval of the UK’s Hornsea 3 offshore wind farm, which is the country’s first turbine project to require “ecological compensation,” according to sustainable technology site Electrek on Friday. Once completed in 2025, Hornsea 3 will provide roughly 2.85-gigawatts of power to the country—enough to power over 3 million homes. Before that can happen, however, the Danish wind farm company Ørsted partnered with Red7Marine and others to design and erect the new kittiwake apartment complexes.

The three ANS are located less than a mile off the coast of England, and required a pair of “jack-up” barges alongside a host of other tools to build. According to Red7Marine, a team of architects, engineers, and ecologists collaborated to design the artificial eight-sided nesting walls, which feature narrow ledges to replicate kittiwakes’ natural cliffside habitats. The main structure is also intentionally painted off-white to blend in with both the ocean and sky, while the interior is furnished with tables, chairs, and whiteboards for researchers visiting the locales. Each nest nook also includes sliding Perspex paneling to allow for unobtrusive monitoring of the kittiwakes.

“Kittiwake are listed as at risk from extinction and with climate change as a key driver to their decline, a move towards a green energy system could help considerably in the long-term conservation of the species,” Ørsted’s environmental manager Eleni Antoniou said in a statement provided to Electrek. “In the meantime, the provision of these structures will provide a safe, nesting space to enable future generations to raise young away from predators and out of town centers.”

The post Artificial nests could give endangered birds a home near new offshore wind farm appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
US climate efforts look promising, but there’s more to do https://www.popsci.com/environment/rhodium-emissions-climate-report-2023/ Fri, 21 Jul 2023 14:00:00 +0000 https://www.popsci.com/?p=558118
Wind turbines on green hills
By 2035, an estimated 63 to 87 percent of all US power generation could come from zero or low emitting plants. Deposit Photos

The Inflation Reduction Act does a lot—but not enough to knock out Paris Climate Agreement goals.

The post US climate efforts look promising, but there’s more to do appeared first on Popular Science.

]]>
Wind turbines on green hills
By 2035, an estimated 63 to 87 percent of all US power generation could come from zero or low emitting plants. Deposit Photos

On August 16, 2022, President Joe Biden signed what many have called the most important climate legislation in the history of the US—the Inflation Reduction Act (IRA). After years of slow progress and resistance against policies that support the growth of clean energy and limit greenhouse gas emissions, the IRA finally looked like it could get the US back on track to Paris Climate Agreement goals. While the estimated decrease in emissions is notable, however, we’re still not on track to reach these lofty goals with the IRA alone.  

Eleven months after the enactment of the IRA, the Rhodium Group, an independent research group, published their annual Taking Stock report, this time including projecting the greenhouse gas reductions of the policy for the coming decades. What they’ve found is that the current policies, as of June 2023, put the US on track to decrease emissions 32 to 51 percent below 2005 levels by 2035. By 2030, the US is expected to achieve 29 to 49 percent reductions, which is a “meaningful departure from previous years’ expectations,” the authors write, but still not enough to hit Paris goals. 

[Related: ‘Humanity on thin ice’ says UN, but there is still time to act on climate change.]

The IRA largely takes aim at slashing emissions in the power and transportation sectors, and Rhodium’s analysis shows that these sectors are off to a good start. The report shows that in 2035 an estimated 63 to 87 percent of all US power generation could come from zero or low emitting plants, up from 40 percent in 2022. This, combined with the rapid growth of the electric vehicle industry, is poised to reduce household energy bills by $2,200-$2,400 per year in 2035 from 2022 levels, according to the report.

However, a challenge still lies in the industry sector of emissions reductions, where the law has a negligible impact on fossil fuel use from things like petroleum refining and steel production. “A bunch of these emissions are coming from burning stuff to heat stuff up,” Ben King, an associate director with Rhodium and lead author of the report, told the Washington Post. “We think there’s an opportunity to electrify those processes, but we’re still trying to crack the nut on those solutions.”

On top of that, continuing progress in power reductions would require an addition of 32-92 gigawatts of wind and solar power every year between now and 2035. According to the report, 32 GW of renewables is “roughly equivalent to the best year of renewable installations on record.”

[Related: World set to ‘temporarily’ breach major climate threshold in next five years.]

The report goes to show that federal policies can only take the country so far—reaching Paris Agreement goals is possible with supporting policies at the state level. According to the Center for Climate and Energy Solutions, DC and 24 states (such as California, New York, and Oregon) have all adopted specific emissions reduction targets, but some states (like Texas, Georgia, and Ohio) still lag behind. 

“The IRA is the most substantial federal action the US has ever taken to combat climate change, but it was not intended to solve every decarbonization challenge in one bill,” the authors write. “A sustained stream of federal and state actions is the only way to close the US emissions gap.”

The post US climate efforts look promising, but there’s more to do appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
This art installation will tell time and produce solar energy https://www.popsci.com/technology/sundial-art-solar-energy-houston/ Thu, 20 Jul 2023 19:00:00 +0000 https://www.popsci.com/?p=557979
Arco del Tiempo (Arch of Time) mockup
Rendering of Arco del Tiempo (Arch of Time). The installation will act as an hourly art show, shady spot to cool down, and renewable energy generator. LAGI

Each year, the sculpture should generate 400,000 kilowatt-hours of electricity.

The post This art installation will tell time and produce solar energy appeared first on Popular Science.

]]>
Arco del Tiempo (Arch of Time) mockup
Rendering of Arco del Tiempo (Arch of Time). The installation will act as an hourly art show, shady spot to cool down, and renewable energy generator. LAGI

The oldest known sundial was made in Egypt over 3,000 years ago, for telling the time as the sun passed through the day’s sky. Since then, we’ve upgraded our time-telling technology significantly—but the fascination with tracking the sun remains. 

Today, the sun’s power is often discussed as a means to create clean, renewable energy through solar photovoltaic and thermal cells. A recently announced permanent artwork in the city of Houston, Texas makes a way to celebrate sun-centered technology over the eons. Artist and architect Riccardo Mariano plans to build the world’s largest free-standing sundial which will simultaneously generate clean energy. The 100-foot-tall arch is expected to produce around 400,000 kilowatt-hours of solar electricity each year, equivalent to the demand of around 40 Texas homes. 

[Related: Scientists think we can get 90 percent clean energy by 2035.]

Artist and architect Riccardo Mariano originally entered the idea, called the Arco del Tiempo (Arch of Time), in a Land Art Generator Initiative (LAGI) design competition for Abu Dhabi in 2019. The arch has found its new home, however, acting as an entrance to Houston’s Second Ward community. The sculpture acts as a giant clock, as different beams of light create geometric shapes corresponding with the seasons of the year and the hours of the day on the ground and surfaces of the arch. At night, the arch will be used as a stage for concerts and other community events. 

Renewables photo
Rendering of the Arco del Tiempo (Arch of Time) at night. Credit: LAGI.

“The apparent movement of the sun in the sky activates the space with light and colors and engages viewers who participate in the creation of the work by their presence,” Mariano said in a release. “It is a practical example to illustrate the movement of the earth around the sun in a playful way.” 

The south-facing exterior of the giant arch will be linked with solar modules, which will allow the artwork itself to offset the power demand of the nearby community arts center Talento Bilingue de Houston. Over its lifetime, LAGI states that the artwork will be able to generate over 12 million kilowatt-hours of energy, enough to “pay back” the footprint required to create the artwork and it’s materials.

[Related: Solar panels are getting more efficient, thanks to perovskite.]

This isn’t the first, or likely the last, exploration of renewable energy as art. While some opponents to clean energy projects note the less-than-attractive appearance of solar panels or wind turbines lining the landscape, innovative projects can turn energy-generating projects into gorgeous murals to funky sculptures that double as charging stations

Robert Ferry, one of the Land Art Generator Initiative co-founders, hopes the Arco del Tiempo can hopefully act as “an antidote to climate despair” in one of the most climate change-impacted regions in the US. The installation is set to be completed in 2024.

The post This art installation will tell time and produce solar energy appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
A cap on ‘luxury’ emissions could make a clean energy transition fairer https://www.popsci.com/technology/europe-luxury-emissions/ Mon, 17 Jul 2023 22:00:00 +0000 https://www.popsci.com/?p=557243
Limousine and private jet on landing strip.
A new study confirms the wealthiest must do their part to help stave off climate collapse. Deposit Photos

Hypothetical cutbacks would make plenty of room to lift vulnerable populations out of energy poverty, according to a new study.

The post A cap on ‘luxury’ emissions could make a clean energy transition fairer appeared first on Popular Science.

]]>
Limousine and private jet on landing strip.
A new study confirms the wealthiest must do their part to help stave off climate collapse. Deposit Photos

There are a myriad of things everyday consumers can do to reduce their carbon footprints: basic water conservation, recycling, and transitioning to electric vehicles. While it’s true that everyone can benefit from striving to live their greenest lives, a new study reaffirms a less popularized fact—the world’s wealthiest are disproportionately responsible for producing dangerous carbon emissions.

According to a new study, reducing “luxury” demands from the top 20 percent of Europeans using the most energy would save seven times the amount of emissions generated from meeting energy needs for the continent’s bottom 20 percent. In doing so, the hypothetical cutbacks would more than make up for the necessary emissions that stem from lifting the most vulnerable out of what some call energy poverty.

[Related: ‘Slow water’ could transform the Southwest, one little rock wall at a time.]

As detailed in a paper published on Monday in Nature Energy, researchers working together from the Universities of Leeds and Manchester modeled narrowing European households’ energy uses across an array of instances, including personal transportation, home insulation, and holiday travel. To do so, researchers created a fictional country composed of 100 citizens drawn from 27 European countries—all of the EU minus Austria, alongside the UK. In this scenario, the first citizen uses the least energy, with each subsequent resident using more. Researchers then lowered the demands of residents 81-to-100 down to the level of the 80th citizen, while simultaneously raising the energy demand of residents 1-19 to the level of resident 20.

The team determined that such luxury usage caps cut household energy emissions by over 11 percent, alongside transportation emissions by nearly 17 percent. Meanwhile, meeting needs for impoverished Europeans only raised emissions by barely 1 percent for home energy, and just under 1 percent for transportation costs.

[Related: Recycling plants spew a staggering amount of microplastics.]

In an interview with The Guardian on Monday, University of Leeds professor of sustainable welfare and study lead author Milena Buchs explained, “We have to start tackling luxury energy use to stay within an equitable carbon budget for the globe, but also to actually have the energy resources to enable people in fuel poverty to slightly increase their energy use and meet their needs.”

Such energy use reductions are incredibly feasible for middle- and upper-class residents, as they frequently have more agency and financial leeway to make the necessary adjustments with little-to-no impact on their quality of living. While technological innovations must still lead the way to a sustainable, healthy future for the planet, reducing the wealthiest individuals’ footprint is also a major component in ensuring critical climate goals are met. 

The post A cap on ‘luxury’ emissions could make a clean energy transition fairer appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Solar panels are getting more efficient, thanks to perovskite https://www.popsci.com/environment/perovskite-silicon-tandem-solar-cell/ Fri, 07 Jul 2023 19:30:00 +0000 https://www.popsci.com/?p=554194
Charles Chee Surya holding perovskite/silicon solar cell.
Hong Kong Polytechnic University's Charles Chee Surya holding his version of a tandem solar cell in 2016. Photo by K. Y. Cheng/South China Morning Post via Getty Images

Two ingredients is better than one when it comes to PV technology.

The post Solar panels are getting more efficient, thanks to perovskite appeared first on Popular Science.

]]>
Charles Chee Surya holding perovskite/silicon solar cell.
Hong Kong Polytechnic University's Charles Chee Surya holding his version of a tandem solar cell in 2016. Photo by K. Y. Cheng/South China Morning Post via Getty Images

Solar PV capacity is growing rapidly across the United States (and elsewhere). In the last decade alone the market for solar has grown by 24 percent each year, according to the Solar Energy Industries Association (SEIA). Across the US, there’s already 149 gigawatts of solar capacity installed, which could theoretically power 26 million homes. The future seems bright too, as SEIA and Wood Mackenzie predict that the solar market will triple in size in five years, bringing capacity up to 378 gigawatts in 2028. Solar power made up 1.2 trillion watts of electricity produced worldwide in 2022.

[Related: Floating solar panels could be the next big thing in clean energy.]

Solar energy development and investment is crucial to building a cleaner, more sustainable future, as the technology allows for a great deal of energy to be produced while emitting no planet-harming greenhouse gasses. The technology has come a long way in recent years (and leaps and bounds from its first stages in the 19th century), but efficiency of the average solar panel still stands at about 15-20 percent on average. That means around 80-85 percent of the raw energy beaming down from our favorite star is lost. Not to mention that silicon solar cells, which are the most common deployed photovoltaic tech, have a theoretical limit of around 29 percent efficiency. 

Scientists have been trying to solve this problem for years. One team from NREL made a panel with 47 percent efficiency, but unfortunately, the model is a bit too expensive for mainstream use. However, described in two separate papers published in Science on July 6, two different teams of researchers found a way to give silicon solar panels a much needed boost—perovskite.

Perovskite is a mineral that has the same crystal structure as calcium titanium oxide, but can be made up of several different elements for different purposes, according to the University of Washington. They also make for a pretty solid semiconductor for solar panels with a laboratory record efficiency at 25.2 percent

The two teams paired up perovskite with silicon to make a tandem solar cell. These technologies aren’t necessarily new—the first one was developed in 2009, and a team from Hong Kong was able to bring efficiency up to around 25 percent in 2016. But, now scientists are reaching even higher.

In one study, Xin Yu Chin of Switzerlands’ Ecole Polytechnique Fédérale de Lausanne and team used a perovskite top cell and silicon bottom cell, adding phosphonic acid additives during the processing of the cells. Their cell reached efficiencies of 31 percent.

The other team, led by Helmholtz-Zentrum Berlin für Materialien und Energie’s Silvia Mariotti, used an ionic liquid called piperazinium iodide to enhance their tandem solar cell, achieving an efficiency rate of up to 32.5 percent. 

“Overcoming this threshold provides confidence that high-performance, low-cost PVs can be brought to the market,” material science researchers Stefaan de Wolf and Erkan Aydin, who were not involved in the research, wrote in a related perspective article published in Science

[Related: Scientists think we can get 90 percent clean energy by 2035.]

The competition is heating up outside of Europe as well—de Wolf, a professor at King Abdullah University of Science and Technology in Saudi Arabia, claims his team has achieved 33.7 percent efficiency in a yet unpublished tandem cell test run earlier this year. LONGi, a Chinese company that produces a majority of the world’s solar panels, announced their development of a tandem solar panel with an efficiency of 33.5 last month

As exciting as this all is, it’s still just the very beginning. We need a lot more clean energy to reduce greenhouse gas emissions to keep the planet liveable

“Overcoming the 30 percent threshold provides confidence that high performance, low-cost PVs can be brought to the market,” De Wolf told the Guardian. “Yet to avert the catastrophic scenarios associated with global warming, the total capacity needs to increase to about 75TW by 2050.”

The post Solar panels are getting more efficient, thanks to perovskite appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
This tiny hydrogen-fueled car just broke a world record for going the distance https://www.popsci.com/technology/eco-runner-hydrogen-car/ Wed, 05 Jul 2023 16:00:00 +0000 https://www.popsci.com/?p=553286
Eco-runner 13 model
The small but mighty Eco-Runner XIII. ECO-RUNNER TEAM DELFT

Netherlands' Eco-Runner XIII broke the Guinness World Record for the greatest distance driven on full tanks of hydrogen fuel.

The post This tiny hydrogen-fueled car just broke a world record for going the distance appeared first on Popular Science.

]]>
Eco-runner 13 model
The small but mighty Eco-Runner XIII. ECO-RUNNER TEAM DELFT

While plug-in electric vehicles are the center of much hype, they aren’t the only type of newfangled, potentially sustainable vehicle that the world’s brightest minds have set their sights on. Fuel cell electric vehicles also use electricity, but instead of using a battery, they produce electricity internally using a hydrogen fuel cell. While these kinds of vehicles have been around for a while, the technology has faced plenty of challenges and hurdles—namely inefficiency and range anxiety.

However, a team of students at the Netherland’s Delft University of Technology recently took a big step for hydrogen cars—and, simultaneously, broke the Guinness World Record for the greatest distance driven on full tanks of hydrogen fuel. On Sunday, June 25, the student team drove their hydrogen-fueled Eco-Runner XIII for 2,488.4 kilometers (1,546.2 miles) over the course of three days on just one kilogram of hydrogen fuel—that’s about the distance between Boston and Miami. The student crew drove the 71.5 hours in rotating shifts of two hours, only stopping to switch out drivers.

[Related: A beginner’s guide to the ‘hydrogen rainbow’.]

The previous record of 2,056 kilometers (1,277 miles) was set only last May by ARM Engineering’s electric Renault Zoe, which operates using a methanol fuel cell. 

The impressive feat took place at Germany’s Immendigen track. The record-breaking vehicle is the thirteenth iteration of the Eco-Runner, the first of which was revealed in 2005. The scientists first exhibited the final design of the Eco-Runner XIII in May, touting the development as possibly the most efficient hydrogen car yet. The three-wheeled, cloud-shaped vehicle utilizes carbon fiber instead of steel for parts such as push rods in the steering system, the hull of the vehicle, and suspension beams. Additionally, the team took extra care to factor in energy efficiency in terms of energy losses—especially during the conversion of hydrogen to electricity, and then electricity to kinetic energy. To do so, the team used a “brand-new” fuel cell

All in all, the 72 kilogram (158 pound) car can drive around 45 kilometers per hour (27 miles per hour). While this one-person, funky-shaped, car might not be road-trip ready, the team hopes their developments can keep pushing the clean technology closer to the mainstream. Around 56,000 hydrogen cars were sold worldwide in 2022 according to one report, and the market for such vehicles is slated to hit $17.88 billion by 2029.  

[Related: This plane powered by hydrogen has made an electrifying first flight.]

For those who are intrigued by hydrogen vehicles and live in the Netherlands, you’re in luck—the first hydrogen energy refueling hub was just unveiled outside of Amsterdam.

“Electric cars are also part of the solution for sustainable mobility, but the electricity grid is already filling up,” Eline Schwietert, the Delft team’s press contact, said in a recent statement. “Electrifying the whole world is not an option. Hydrogen and electric cars go hand in hand. There is not one big winner.”

The post This tiny hydrogen-fueled car just broke a world record for going the distance appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
How can we decarbonize copper and nickel mining? https://www.popsci.com/environment/decarbonize-copper-nickel-mining/ Wed, 28 Jun 2023 16:00:00 +0000 https://www.popsci.com/?p=551835
By 2050, the annual supply of copper and nickel will have to increase by about 150 to 200 percent.
By 2050, the annual supply of copper and nickel will have to increase by about 150 to 200 percent. DepositPhotos

The emissions from gathering crucial materials could skyrocket if we aren't careful.

The post How can we decarbonize copper and nickel mining? appeared first on Popular Science.

]]>
By 2050, the annual supply of copper and nickel will have to increase by about 150 to 200 percent.
By 2050, the annual supply of copper and nickel will have to increase by about 150 to 200 percent. DepositPhotos

We are at the beginning of a green technological revolution, according to the United Nations Conference on Trade and Development. The transition to a low-carbon economy to mitigate climate change would not be possible without green technologies like electric vehicles, solar panels, wind turbines, and energy storage systems. However, these technologies rely on over 10 different minerals and metals—including copper, nickel, cobalt, and aluminum—whose production must increase significantly to meet demand.

By 2050, the annual supply of copper and nickel, in particular, will have to increase by about 150 to 200 percent relative to 2020 production levels to meet the needs of green technology deployments. If production grows rapidly, the associated environmental impacts and greenhouse gas (GHG) emissions are expected to rise as well. Under a business-as-usual scenario, the GHG emissions of copper and nickel may increase by 125 and 90 percent, respectively, by 2050. Therefore, decarbonizing the mining industry is an essential part of meeting global climate targets.

How mining affects the environment

Mining is an environmentally invasive process. Its impacts manifest in land use change, disturbance to local ecosystems, and GHG emissions, says Paolo Natali, a principal with RMI’s climate intelligence program who leads the Supply Chain Emissions Initiative. The nature of mining is to disturb large areas of land to retrieve resources deep below the surface, that’s why it can drive deforestation and increase the erosion rate greatly. Waste rock and tailings from mining may also contaminate the soil and water, which, combined with the clearing of forests, contributes to habitat loss and ecosystem damage.

[Related on PopSci+: The summer issue of PopSci is extremely metal.]

Mining is also a significant source of GHG emissions due to the use of diesel-powered equipment, which releases carbon dioxide, as well as through the release of trapped gasses like methane, says Natali. The supply chain is also energy-intensive because activities like drilling and blasting, material handling or the process of moving the mined material out of the mine via conveyor belts or trucks, grinding, metal smelting, and transporting all require a lot of energy.

Natali says copper and nickel extraction, in particular, are experiencing declining ore grades. Ore grades refer to the concentration of the mineral or metal content in an ore-bearing rock. Declining grades means that it’s taking more effort to gather the same amount of mineral, and therefore using up more energy and resulting emissions, he adds. As the ore grade decreases, the energy, diesel, and electricity used all increase. The finite nature of these resources—which makes it necessary to go deeper and into more remote areas to keep finding them—and the economies of scale that the mining industry has developed have enabled lower grades to be processed profitably, says Natali.

Increasing the production of copper and nickel to address the growing need for green technologies would increase the impacts of mining and harm the environment even further. Perrine Toledano, the director of research and policy at the Columbia Center on Sustainable Investment, says meeting the rising mineral demand will put pressure on freshwater resources in copper mining regions and present a significant biodiversity risk in locations with nickel reserves. Chile, the world’s top copper producer, is already water-scarce and will face increasing water risks due to the impacts of climate change.

Overall, decarbonizing mining is necessary to successfully transition to a low-carbon economy.

Decarbonizing copper and nickel mining

To cut emissions associated with carbon-intensive energy production, the industry should replace fossil fuels and its generated electricity with renewable energy, sustainable biofuels, and green hydrogen, says Toledano. For instance, eliminating diesel use in mining equipment may remove up to 40 percent of a mine site’s emissions.

Aside from using clean electricity, Natali says adopting higher precision mining techniques to improve ore grades and electrifying the energy input, like by using conveyors or electric trucks during material handling, are crucial. Latest developments in battery electric large-haul trucks, such as fast charging or hydrogen fuel-cell range extenders, will have to be coupled with the increasing use of renewable energy and new technologies downstream to eliminate emissions from high temperature and chemical processes like smelting and refining, he adds.

[Related: For years, Chile exploited its environment to grow. Now it’s trying to save it.]

Circular economy interventions like increasing metal recovery and reusing mineral and non-mineral waste may also support emission reductions across the mining value chains. Both copper and nickel can be recycled repeatedly without losing their properties or quality. Moreover, recycled copper uses about 85 percent less energy than primary production.

Policymakers can support a just transition to net zero mining by establishing stricter and clearer regulation of mining activities and subsidizing green energy, says Natali. He also recommends requiring that imported minerals face similar environmental and social standards with domestically produced minerals.

Fossil fuel subsidies in place create an artificial cost disadvantage for renewables, says Toledano. Such subsidies reduce the cost of fossil-fuel-powered electricity generation, which makes renewable energy less competitive. They can also reinforce the reliance on fossil fuels and make it more favorable. Therefore, policymakers must ensure the penetration of renewable energies, which could support the transition of the mining industry to clean energy.

Decarbonizing copper and nickel mining won’t happen in an instant. However, by switching to renewable energy, improving production efficiency, and establishing policies that include climate-related mitigation and adaptation obligations on mining operations, meeting increasing mineral demand with fewer emissions may become achievable.

The post How can we decarbonize copper and nickel mining? appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
How does electricity work? Let’s demystify the life-changing physics. https://www.popsci.com/technology/how-does-electricity-work/ Mon, 19 Jun 2023 11:00:00 +0000 https://www.popsci.com/?p=549308
Tesla coil experiment to demonstrate how electricity works.
A Tesla coil gives off current electricity, where the negatively charged electrons continuously move, just like they would through an electrical wire. Depositphotos

How current is your knowledge?

The post How does electricity work? Let’s demystify the life-changing physics. appeared first on Popular Science.

]]>
Tesla coil experiment to demonstrate how electricity works.
A Tesla coil gives off current electricity, where the negatively charged electrons continuously move, just like they would through an electrical wire. Depositphotos

To the uninitiated, electricity might seem like a sort of hidden magic. It plays by laws of physics we can’t necessarily perceive with our eyes.

But most of our lives run on electricity. Anyone who has ever lived through a power outage knows how inconvenient it is. On a broader level, it’s hard to understate just how vital the flow of electricity is to powering the functions of modern society.

“If I lose electricity, I lose telecommunications. I lose the financial sector. I lose water treatment. I can’t milk the cows. I can’t refrigerate food,” says Mark Petri, an electrical grid researcher at Argonne National Laboratory in Illinois. 

[Related: How to save electricity this summer]

Which makes it all the more important to know how electricity works, where it comes from, and how it gets to our homes.

How does electricity work?

The universe as we know it is governed by four fundamental forces: the strong nuclear force (which holds subatomic particles together inside atoms), the weak nuclear force (which guides some types of radioactivity), gravity, and electromagnetism (which governs the intrinsically linked concepts of electricity and magnetism). 

One of electromagnetism’s key tenets is that the subatomic particles that make up the cosmos can have either a positive or negative charge. To use them as a form of energy, we have to make them flow as electric current. The electricity we have on Earth is mostly from the movement of negatively charged electrons. 

Fossil Fuels photo

But it takes more than a charge to keep electrons flowing. The particles don’t travel far before they run into an obstacle, such as a neighboring atom. That means electricity needs a material whose atoms have loose electrons, which can be knocked away to keep the current going. This type of material is known as a conductor. Most metals have conductive qualities, such as the copper that forms a lot of electrical wires.

Other materials, called insulators, have far more tightly bound electrons that aren’t easily pushed around. The plastic that coats most wires is an insulator, which is why you don’t get a nasty shock when you touch a cord or plug.

Some scientists and engineers think of electricity as a bit like water streaming through a pipe. The volume of water passing through a pipe section at a given time compares to the number of electrons flowing through a particular strand of wire, which scientists measure in amps. The water pressure that helps to push the fluid through is like the electrical voltage. When you multiply amps by volts, you compute the power or the amount of energy passing through the wire every second, which electricians measure in watts. The wattage of your microwave, then, is approximately the amount of electrical energy it uses per second.

How electrons carry voltage through wires

Based on the law of electromagnetism, if a wire is caught in a magnetic field and that magnetic field shifts, it induces an electric current in the wire. This is why most of the world’s electricity is born from generators, which are typically rotating magnetic apparatuses. As a generator spins, it sends electricity shooting through a wire coiled around it.

[Related: The best electric generators for your home]

Powering a whole city calls for a colossal generator, potentially the size of a building. But it takes energy to make energy from that generator. In most fossil fuel and nuclear plants, the fuel source boils water into steam, which causes turbines to spin their respective generators. Hydro and wind generators take advantage of nature’s own motion, redirecting water or gusts of wind to do the spinning. Solar panels, meanwhile, work differently because they don’t need moving magnets at all. When light strikes a solar cell, it excites the electrons within the atoms of the material, causing them to flow out in a current.

It’s easier to transfer energy with lots of volts and fewer amps. As such, long-distance power lines use thousands of volts to carry electricity away from power plants. That’s far too high for most buildings, so power grids rely on substations to lower the voltage for regular outlets and home electronics. North American buildings typically set their voltage to 120 volts; most of the rest of the world uses between 220 and 240 volts.

Current also doesn’t flow one way—instead, it constantly switches direction back and forth, which engineers call alternating current. This enables it to travel stretches of up to several thousands of miles. North American wires flip from one current direction to the other 60 times every second. In other parts of the globe, particularly in Europe and Africa, they alternate back and forth 50 times every second.

That brings the current to your building’s breaker box. But how does that power actually get to your electronic devices? 

[Related: Why you need an uninterruptible power supply]

To keep a continuous flow of electricity, a system needs a complete circuit. Buildings everywhere are wired with incomplete circuits. A two-hole socket contains one “live” wire and one “neutral” wire. When you plug in a lamp, kitchen appliance, or phone charger, you’re completing that circuit, allowing electricity to flow from the live wire, through the device, and back through the neutral wire to deliver energy. 

Put another way, if you stick a finger into a live socket, you’re temporarily completing the circuit with your body (somewhat painfully).

An electrical worker suspended on high-voltage power lines in China against the sunset
An electrician carries out maintenance work on electric wires of a high-voltage power line project on September 28, 2022, in Lianyungang, China. Geng Yuhe / VCG via Getty Images

The future of electricity

Not long ago, electricity was still a luxury. In the late 1990s, nearly one-third of the world’s population lived in homes without electrical access. We’ve since cut that proportion by more than half—but nearly a billion people, mainly concentrated in sub-Saharan Africa, still don’t have a current.

Historically, almost all electricity started at large power plants and ended at homes and businesses. But the transition to renewable energy is altering that process. On average, solar and wind farms are smaller than hulking coal plants and dams. On rainy and calm days, giant batteries can back them up with stored power.

“What we have been seeing, and what we can expect to see in the future, is a major evolution of the grid,” says Petri.

[Related: Why hasn’t Henry Ford’s power grid become a reality?]

The infrastructure we build around electricity makes a difference, both for the health of the planet and people. In 2020, only 39 percent of the world’s electricity came from clean sources like nuclear and hydro, compared to CO2-emitting fossil fuels.

Fortunately, there is plenty of reason for optimism. By some accounts, solar power is now the cheapest energy source in human history, with wind power not far behind. Moreover, a growing number of utility users are installing rooftop solar panels, solar generators, heat pumps, and the like. “People’s homes are not just taking power from the grid,” says Petri. “They’re putting power back on the grid. It’s a much more complex system.”

The laws of electricity don’t change depending on where we choose to draw our current from. But the consequences of our decisions on how to use that power do matter.

The post How does electricity work? Let’s demystify the life-changing physics. appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Where will electric semi-trucks recharge? California has a big solution. https://www.popsci.com/technology/electric-semi-truck-charging-california/ Fri, 16 Jun 2023 13:00:00 +0000 https://www.popsci.com/?p=549172
Forum Mobility says they are building enough recharging depots to simultaneously handle a total of 600 trucks over the next 18 months.
Forum Mobility says they are building enough recharging depots to simultaneously handle a total of 600 trucks over the next 18 months. Forum Mobility

The state estimates it needs to build 57,000 medium- and heavy-duty chargers by 2030.

The post Where will electric semi-trucks recharge? California has a big solution. appeared first on Popular Science.

]]>
Forum Mobility says they are building enough recharging depots to simultaneously handle a total of 600 trucks over the next 18 months.
Forum Mobility says they are building enough recharging depots to simultaneously handle a total of 600 trucks over the next 18 months. Forum Mobility

California’s massive, ongoing push to completely electrify its public and private transportation sectors by 2035 is getting a major boost.. According to recent reports,  the electric truck and charging station manufacturer Forum Mobility is planning to soon begin construction on a 96-vehicle capacity recharging depot for drayage carriers. These are the massive transports used to move goods between ports, distribution centers, and rail yards.

The news comes barely a month after the California Air Resources Board announced that, beginning next year, any new trucks purchased by a shipping company in the state must be an electric model powered by either hydrogen fuel cells or batteries. According to clean energy news site Electrek on Wednesday, funding for the 4.4-acre site will derive in part from a $4.5 million East Bay Community Energy (EBCE). Earlier this year, Forum Mobility also received a major additional investment from Amazon’s Climate Pledge Fund, a program aimed at helping the massive retailer achieve net zero carbon by 2040.

“Today we can provide a Class 8 electric truck, and all its charging needs, at a monthly price that’s competitive with diesel—without the emissions,” Matt LeDucq, CEO and co-founder of Forum Mobility, said at the time.

[Related: Electric vehicles are only one part of sustainable transit.]

Despite their comparatively small numbers compared to consumer vehicles, the EPA estimates that medium- and heavy-duty trucks account for around 23 percent of the nation’s annual greenhouse gas emissions. Tackling that segment of industry is key to transitioning towards a green, sustainable infrastructure for not just California, but the US overall.

According to Electrek, California’s in-state drayage fleet includes an estimated 33,000 trucks, which the California Energy Commission has stated will require approximately 157,000 medium- and heavy-duty chargers by the decade’s end to comply with all new vehicle regulations. When faced with those numbers, the addition of a 96-vehicle charging facility may only seem like a drop in the bucket. But it is  all-but-certain Forum Mobility’s Greenville Community Charging Depot is just the first of many similar announcements to come for the state. According to Forum Mobility’s CEO, the company is in the process of building enough recharging depots to simultaneously handle a total of 600 trucks over the next 18 months.

The post Where will electric semi-trucks recharge? California has a big solution. appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Community-owned solar will soon power this small mountain town in Puerto Rico https://www.popsci.com/environment/puerto-rico-solar-microgrid/ Tue, 13 Jun 2023 01:00:00 +0000 https://www.popsci.com/?p=547870
Puerto Rico-based Máximo Solar hired local women to help install the 700 solar panels that power the microgrid.
Puerto Rico-based Máximo Solar hired local women to help install the 700 solar panels that power the microgrid. Casa Pueblo

Residents in Adjuntas, Puerto Rico, have built the island’s first community-owned solar microgrid.

The post Community-owned solar will soon power this small mountain town in Puerto Rico appeared first on Popular Science.

]]>
Puerto Rico-based Máximo Solar hired local women to help install the 700 solar panels that power the microgrid.
Puerto Rico-based Máximo Solar hired local women to help install the 700 solar panels that power the microgrid. Casa Pueblo

This article originally appeared in Nexus Media News and Next City as part of a series that looks at how cities are tackling inequality and the climate crisis. A Spanish-language version of this article, translated by Patricia Guadalupe and produced by palabra, is available here.

For two weeks after Hurricane Maria devastated Puerto Rico in 2017, Lucy’s Pizza was the only restaurant open in the central mountain town of Adjuntas. The town’s 18,000 residents, like those on the rest of the island, were entirely without electricity. 

“No one has power, you can’t get gas, it’s difficult to make food, so everyone came here to eat,” said owner Gustavo Irizarry. “The line,” he gestured down the block along the town’s central plaza, “endless.”

Using a diesel generator, Lucy’s was running at about 75% capacity. The generator was loud, smelly and expensive to run — Irizarry spent $15,000 on diesel in the six months the grid was down. He was often up in the middle of the night to restart the generator because of the risk of losing power to the refrigerators. He didn’t want ingredients to spoil.

Now, nearly six years later, Irizarry is poised to generate his own energy from the sun. He’s one of 14 merchants in downtown Adjuntas who have invested in the island’s first community-owned solar microgrids — expected to go live before this summer. 

“After Maria, we saw the vulnerability and the necessity to have an electric system that truly works,” Irizarry said. “To have better, alternative power, to be able to live.”

The microgrid project is the latest effort in a grassroots movement to build energy security in Puerto Rico in the form of solar power.  Across the island, groups like Casa Pueblo, which first opened in Adjuntas more than 40 years ago, have relied on deep roots in the community to create local buy-in and make it an equitable transition.

Renewables photo
In March 2023, thousands lined the streets of Adjuntas for Casa Pueblo’s second annual rally for solar energy. (Photo by Katherine Rapin)

“The microgrid is a major step in taking Puerto Rico from the vulnerability of the centralized fossil fuel system to the aspiration that I think we share in Puerto Rico,” said Arturo Massol Deyá, associate director of Casa Pueblo. “To use [renewable] fuels and generate power at the point of consumption, where it’s needed.”

Microgrids power small networks of buildings with energy that’s generated close to where it’s used, often wind or solar. The systems are typically connected to a central grid, but in the case of an outage they can run on “island mode,” relying solely on locally-generated power and battery storage capacity. 

Hurricane Maria damaged 80% of Puerto Rico’s power grid, and the subsequent outages, which lasted for months, contributed to the storm’s death toll. Six years and $14 billion in federal commitments later, Puerto Rico’s central grid is still in disrepair. 

Puerto Ricans suffer regular outages while spending, on average, 8% of their incomes on electricity, according to the Institute for Energy Economics & Financial Analysis (IEEFA). (The average American spends 2.4% on electricity.)

“It’s not an opportunity to move away from the centralized system,” said Massol Deyá. “In Puerto Rico, it’s a necessity.” 

Puerto Rico’s energy problems predate Maria. The island’s utility, PREPA, had filed for bankruptcy in March 2017, nearly six months before Maria. In 2020, officials signed a 15-year contract giving Luma Energy, a consortium of Canadian and U.S. companies, control over the transmission and distribution of electricity. Since Luma took over, rates increased and blackouts have continued.

Renewable energy advocates, including the movement Queremos Sol (We Want Sun), say the solution is obvious. Rooftop solar alone could provide four times the island’s residential energy demand, Department of Energy studies have shown. In 2019, Puerto Rican lawmakers set a goal of transitioning to 40% renewable energy by 2025 and 100% by 2050. But despite those commitments, the island currently sources less than 4% from renewables. In recent years, PREPA has advanced methane gas projects and even proposed a fee on energy generated by rooftop solar to help pay its $9 million debt. 

“It’s the worst thing that could happen to Puerto Rico,” said Massol Deyá of a potential solar tax. (PREPA did not respond to requests for comment.)

For Massol Deyá, the outages following Maria were a tragedy — but also a chance to extoll the benefits of solar power. In the wake of the disaster, Adjunteños gathered at Casa Pueblo, which had installed its first solar panels in 1999 and had gone off the electric grid entirely just months before Maria. Locals were able to charge phones, run dialysis machines, and store medications in the center’s refrigerators. One neighbor came daily to administer her son’s asthma treatment. 

Members of Puerto Rico’s diaspora got in touch with Casa Pueblo to ask how they could help.  “We told everyone, don’t send us money — send us solar lamps,”  Massol Deyá said.

Over the next six months, the organization distributed 14,000 lamps. And in the last six years, it has helped fund and install more than 350 solar energy systems on buildings across town, including in an assisted living facility, a grocery store, the local fire station and many homes in the poorest neighborhoods of Adjuntas. Casa Pueblo even built a public solar park, where locals charge phones using outlets that source energy from solar arrays resembling trees. 

In 2018, Salt Lake City-based Honnold Foundation, which supports solar projects around the world, took notice of what was happening in Adjuntas. Then-director Dory Trimble reached out. “She told us to think bigger,” said Massol Deyá.  “[We thought] why not do downtown Adjuntas, around the main square, which is what gives communities in Puerto Rico a sense of identity?”  

Lucy’s is in one of seven buildings around Adjuntas’ central plaza connected to two half-megawatt battery storage systems that link to the central grid; in the case of an outage, the systems can “island,” relying on their own generation and storage.

By creating a microgrid with other local businesses on the grid, including a bakery, hardware store and pharmacy, Adjuntas could gain energy security during emergencies, all while starving the fossil fuel industry by unplugging those with the highest energy demands.

But as the microgrid idea was taking shape, Casa Pueblo’s late co-founder Tinti Deyá Diaz (Massol Deyá’s mother) said she wanted to ensure that lower-income residents would continue to benefit from the solar transition — after all, households with solar power were paying about $40 less per month on their energy bills, according to Casa Pueblo.

That concern led Irizarry and the 13 other investors in the microgrid to form the Community Solar Energy Association of Adjuntas (ACESA), a non-profit independent utility that reinvests in community solar projects, prioritizing homes of the most vulnerable Adjunteños. “We each have a commitment to the community,” said Irizarry. 

Their dedication paid off. When Hurricane Fiona hit in 2022, it caused widespread outages, but the town’s solar-powered buildings were spared. The local fire station became a regional response center, intercepting calls from a station in Ponce, 15 miles to the south, which had lost power.

“When you see the entire landscape, you know that we are still at risk — we are going to be confronting the same climate change challenges, hurricanes, earthquakes,” says Massol Deyá. “But we are in a better situation for normal days and we’re better positioned to confront difficult times as a community.”

Adjuntas’ transition has earned it nationwide recognition. In March, Secretary of Energy Jennifer Granholm visited Casa Pueblo to discuss plans to disburse $1 billion in federal funds to improve Puerto Rico’s grid. (The Puerto Rico Energy Resilience Fund, approved by Congress in December, will focus on the island’s “most vulnerable and disadvantaged households and communities.”) Following her visit, Granholm tweeted, “They’re leading by example, showing that 100% solar power is possible for Puerto Rico.”

Other communities on the island are interested in replicating Adjuntas’ model. The Monte Azul Foundation is working to develop a solar microgrid in Maricao, 30 miles west of Adjuntas. Last March, director Andrew Hermann visited Adjuntas with Maricao residents.

“Seeing [the microgrid] in person and talking to business owners that are super pro-microgrid — it’s really assuring the business owners here,” Hermann said. “That’s the type of energy that helps build these projects from the ground up.”


This article is co-published with Next City as part of a series that looks at how cities are tackling inequality and the climate crisis.Nexus Media News is an editorially independent, nonprofit news service covering climate change. Follow us @NexusMediaNews.

The post Community-owned solar will soon power this small mountain town in Puerto Rico appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Kraken tests algorithm-based EV charging that won’t sink the grid https://www.popsci.com/environment/uk-octopus-energy-company/ Fri, 09 Jun 2023 01:00:00 +0000 https://www.popsci.com/?p=546495
The charging algorithm takes advantage of the cycle of renewable energy.
The charging algorithm takes advantage of the cycle of renewable energy. DepositPhotos

The UK-based tech company is on a mission to make every tentacle of the energy system as efficient as possible.

The post Kraken tests algorithm-based EV charging that won’t sink the grid appeared first on Popular Science.

]]>
The charging algorithm takes advantage of the cycle of renewable energy.
The charging algorithm takes advantage of the cycle of renewable energy. DepositPhotos

This story originally featured on Hothouse. Subscribe to the climate newsletter on Substack.

Renewable energies have long been criticized for their variability. From brewing your morning coffee or tea to binging Netflix at night, demands for residential power tax the grid most in the mornings and evenings. Meanwhile, renewable wind power peaks in the middle of the night, while solar peaks during the brightest hours of the day. 

Powering the legacy grid with gas or oil is relatively straightforward — you get out what you put in. One gallon of gas in is one gallon of gasoline consumed. As we transition to a green grid, the energy industry finds itself in the position of having to solve for these discrete breakdowns and inherent mismatches between human behavior and renewable generation. 

One promising solution is emerging in the U.K. 

The London-based Octopus Energy is an energy company built around the insight that, by finding a way to shift more residential energy demands to those off-peak hours, we can simultaneously lighten the burden on the grid and reduce energy costs for consumers. 

Take electric cars. If everyone driving electric vehicles plugged their cars in when they return from their 9-to-5, expecting an instantaneous charge, the surge in demand could overwhelm the grid, triggering a meltdown.  

In the U.K., Octopus Energy runs an application called “Intelligent Octopus for EV”, which uses algorithms to both stagger the charging of electric vehicles overnight, ensuring the grid’s need never outstrips its supply, and to time the charging of each vehicle to when renewable energy is most abundant and cheap on the grid. 

When an electric vehicle owner returns home, she simply inputs when she plans to take her car out the next day into the Intelligent Octopus app. 

Following the sun’s cycle of heating and cooling the atmosphere, wind is most abundant at night. The charging algorithm takes advantage of this. In the early morning hours, the algorithm kicks in, and sweet renewable electrons surge into electric cars under the Intelligent Octopus app’s orchestration. 

Today, Intelligent Octopus regulates power supply to 150,000 electric vehicles in the U.K. For now, only customers of utility providers licensing a software platform called Kraken Technologies have access to the application.

Kraken is on a mission to make every tentacle of the energy system as efficient as possible.

Through a mix of software automations, behavioral nudges, and optimized hardware, Kraken pushes people to use energy when renewable electrons are most abundant, and therefore cheapest, on the grid. By tackling this challenge from every angle, Kraken has built a business model out of bridging the gap inherent between the variabilities of renewable energies and human behavior.

A full tech stack for the energy industry

Initially, the Kraken software was conceived to disrupt the payments and billing side of utility companies. Coming from a background in consumer-oriented enterprise software, Octopus Energy CEO Greg Jackson says he and his cofounders saw energy as an antiquated industry where software could add value.

It’s not that traditional utilities don’t run software — they do. It’s that their software is often piecemeal, says Jackson. Utilities typically run numerous layers of disjointed software, with one operating billing, another payments, and a handful more managing communications and energy consumption data. A change to one software could necessitate a change to every other, which is exactly what it sounds like — a house of cards. 

Kraken set out to bundle these services. Similar to the way Substack markets itself as a full tech stack for running an independent media business, Kraken imagined itself as a full tech stack for running an energy company. 

The platform was designed to be a seamless user experience for consumers and utility providers alike. For the first time, a utility representative could actually access and control all aspects of a household’s account, from billing to payments to meter readings, in one place, making the passing of frustrated customers from one department to another a thing of the past.

It was this centralization of data and operations that would ultimately enable a platform even more powerful than the team originally anticipated.

Kraken has, in effect, introduced an operating system to the energy system. 

In the same way that the iPhone’s iOS operating system laid the foundation for the development of endlessly proliferating smartphone applications, Kraken offers an operating system through which software developers, energy retailers, and consumers can collaborate to develop and deploy different applications to solve discrete energy constraints as they arise.

“When the iPhone was launched, it came with iOS, the operating system and 8 built-in apps. An email app, a text app, and a couple of others,” says Jackson. “At the time, it wasn’t obvious that that underlying operating system that enabled an initial few apps to work would develop to the point that you’d have this flourishing development of capability through new apps. Everything from the revolution of transport through Uber to the QR codes, and everything else, all enabled by the fact you’d moved to an operating system, and a few bits of tech on the phone itself, that were fundamentally different than we’d had before. That’s what we can do with energy.” 

The Intelligent Octopus program coordinating the charging of electric vehicles is just one example of multiple applications running on top of Kraken optimizing energy efficiency so far. 

Overcoming the old guard

Kraken’s software now operates in around 10 countries, and its codebase is updated and released 150 times a day. But the road to get here hasn’t been an easy one: marketing Kraken Technologies as a full stack tech platform for energy and utilities management turned out to be a harder sell than anticipated.  

“We had the insight that you could build software platforms in the 21st century that brought this cheaper, greener power to life faster,” Jackson says. “But when we spoke to energy companies, they’re typically very conservative.” 

Most energy companies are well over a century old. The result? Many still do business like it’s 1910. They’re risk averse. The idea of paying for such a comprehensive external software service was so foreign to many traditional utility companies, the creators of Kraken struggled to find a first customer. 

So Kraken decided to build a first customer of its own: Octopus Energy. 

The London-based Octopus Energy launched to the public in April 2016. In the early days, Kraken’s tech team sat with Octopus’s customer service team, listening in on calls to identify pain points in the internal workflow and the customer experience. Through this hands-on research, the Kraken team slowly unearthed inefficiencies that bits of new software or user interfaces could solve — the kinds of insights that could only be gleaned from the inside. 

Kraken’s design improved incrementally, expanding in capacity and technical capability. In time, Kraken has morphed into a fully-fledged dynamic software platform capable of managing an energy system’s entire value chain. 

By streamlining operations and optimizing energy consumption across the board, Octopus Energy is able to sell cheaper clean electricity than its traditional utility counterparts.

That demo client — Octopus Energy — has been so successful, it recently eclipsed all but one of the U.K.’s major energy providers to become the second-largest energy company in the country. Octopus Energy now directly services 18 percent of the U.K. retail energy market directly. If you count U.K. homes that get their energy from other utility companies running Kraken, the market share goes up to 40 percent. 

An unprecedented rate of innovation

Since 2016, Octopus Energy has been ground zero for building and testing apps on top of the Kraken software platform. Once tested and proven, these apps can be used by all utility companies licensing the Kraken software, regardless of location. 

“It’s the same platform, whether you’re in Australia, Tokyo, London, or Munich,” Jackson told The Telegraph. “What that means is, when you learn more about how to optimize charging a car battery in Houston, the same optimization is instantly available around the world.” 

Kraken’s streamlined software grants energy companies an unprecedented agility: Programs can even be spun up in a pinch in response to a crisis. Such a short cycle of innovation is unheard of in the energy industry. 

This last winter, for example, in just a matter of weeks, Kraken was able to design and launch a program in response to the energy supply crunch in the U.K. Forty percent of households serviced by Kraken in the U.K. opted into the program. Customers who volunteer to lighten the load on the energy grid through easy behavioral changes, like running the dishwasher later in the evening instead of immediately after dinner, are rewarded. 

“In the U.K., when electricity is in quite short supply, the national grid will turn on the most expensive and filthy diesel generators to maintain supply,” says Jackson. “And instead of doing that, what we’ve pioneered is paying customers to move their consumption away from the period when the diesel would have been used. Instead of giving the money to the diesel polluters, we give it to the consumers.”

Jackson says this consumer choice of 600,000 participating households — 40 percent of Octopus’ U.K. retail customers — had the equivalent reduction in energy consumption as turning off all the lights in two of the U.K.’s largest cities. 

Building out the customer-centricity of Kraken was critical in unlocking the capacity to promote these kinds of behavioral changes. Meanwhile, the element of Kraken as an “iOS” on top of the energy system is what enabled the rapid prototyping and testing of potential ideas to identify the messaging and incentives that would actually resonate with consumers to develop new energy consumption habits. 

Instead of money, for instance, Octopus gave customers reward points, offering bonuses and multipliers for winning streaks. Prizes go to customers who score within the top five percent. 

The tactics are not unlike that of Duolingo, an app that has perfected the behavioral nudge to get people hooked on language learning. Across the energy industry, perfecting and scaling these kinds of behavioral nudges will be key to addressing renewable energy’s variability systemwide.  

“If you go to the supermarket, you’ll see hundreds of different ways of influencing our purchasing decisions,” says Jackson. “And yet, too often, I’ll read a really well-researched paper in energy that says we tried this program one way [and it didn’t work]. We need to move into the world where we can do so much more.”

Zero-bill homes 

Another app spun up and deployed on Kraken in short order last year is Octopus Zero. 

“In a lot of parts of the United States, consumers and, indeed, in lots of parts of Europe, consumers don’t get paid for excess solar electricity generated on their property when it goes on the grid,” says Jackson. “And that’s complete madness, because, essentially we’re asking people to make an investment that benefits the system, and yet they carry the cost and no benefit.”

With Octopus Zero, Kraken set out to flip that dynamic on its head, rewarding homeowners who adopt electric appliances with quite literal ‘zero-bill homes’ — zero utility bill, zero electricity bill. 

Octopus Zero created an algorithmic model that spits out electric appliance recommendations perfectly suited to the size and dimension of a home by combing billions of historic data points of home electric appliances. The end result is home outfitted for optimal energy efficiency and consumption. From there, Kraken’s proprietary software optimizes each appliance’s energy consumption over time. 

“If a house builder gives us the footprint, the design of a house, we can say how much solar paneling, what size heat pump, what size battery, what kind of hot water heater it needs. And then we’ll optimize all of that [through its connection to the grid], and we’re confident enough in the data that we’ve done, that we’ll underwrite it. And you’ll never get an energy bill for a decade.”

The ‘zero-bills home’ program began with just two houses last September. Now, Jackson, they have 100 additional homes signed up and thousands more in the pipeline. 

In Octopus Energy’s dogged pursuit of end-to-end efficiency, the energy company has even started sticking its tentacles into optimizing electric hardware directly. 

For instance, when Octopus couldn’t find heat pumps capable of talking to the Kraken software in the way they wanted, Octopus mocked up their own ‘intelligent’ heat pumps to maximize efficiency. Jackson says prototypes are currently in the market and a retail product is expected to go into production within the year. 

“The best tech businesses in the world do this. If you look at Amazon, Amazon operates ships, right? I remember when Amazon was an online book store. It now operates ships, and planes. If you want to change the world quickly for the better, and you’ve got technology at the core, you often have to change everything around it, and that’s what we’ll do,” says Jackson. “The key thing here is understanding a bit like a Tesla wasn’t just a car with, you know, some batteries and motors. It was a rethink of the car.”

Not a clean slate, but the next best thing

While the energy transition presents discrete challenges to be solved, it presents discrete opportunities, too.

Jackson emphasizes that trying to make the renewable energy system behave like the fossil fuel system is not only impractical, it also shortchanges us the benefits of renewables not yet imagined. 

“One of the lights that came on for me is that, when you worry about the periods when generation is low, you forget just how incredible the opportunities are [the] times [when] generation is high,” says Jackson. 

Take urban agriculture. From powerful UV lights driving growth, to running intricate sprinkler systems and powerful air purifiers, over half of an indoor farm’s operating expenses can be attributed to energy consumption. Reduce energy costs and dramatically impact the bottom line. 

“We’ve got 14 indoor farms on our customer books who have taught the crops to sleep when energy prices are high, and to grow with light and heat when energy prices are low,” says Jackson. “If we try to make renewables behave like fossil fuels, like by flattening out the curve with [battery] storage, those farms would all be paying more for electricity all the time and we’d be missing out on cheap, locally grown, super healthy food.”

Jackson says we should be identifying opportunities like this where we can capitalize on the fundamentals of renewables. 

In an ideal world, Jackson says, we would reimagine and rebuild the energy system entirely from scratch. He points out that we know we didn’t get the energy system right the first time around with our dependence on fossil fuels.

“If we could all start with a clean sheet of paper, it would be easier,” says Jackson. “[But] stop thinking about what we’ve currently got, because it’s probably largely wrong, right? … Imagine we never had fossil fuels. What world would brilliant and genius humans have built? That’s the world we now need to get to.”

The post Kraken tests algorithm-based EV charging that won’t sink the grid appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
This concept cruise ship will have solar-paneled sails, an AI copilot, and zero emissions https://www.popsci.com/technology/hurtigruten-zero-emission-ship/ Wed, 07 Jun 2023 17:00:00 +0000 https://www.popsci.com/?p=546520
Sea Zero Cruise ship Concept, sails fully extended
The ship's three retractable sails will be covered in solar panels. VARD Design

Hurtigruten Norway hopes to have their sustainable liner hit the high seas by 2030.

The post This concept cruise ship will have solar-paneled sails, an AI copilot, and zero emissions appeared first on Popular Science.

]]>
Sea Zero Cruise ship Concept, sails fully extended
The ship's three retractable sails will be covered in solar panels. VARD Design

Today’s cruise ships are environmental nightmares. Just one vessel packed with a veritable petri dish of passengers can burn as much as 250 tons of fuel per day, or about the same emissions as 12,000 cars. If the industry is to survive, it will need to adapt quickly in order to adequately address the myriad ecological emergencies facing the planet—and one Norwegian cruise liner company is attempting to meet those challenges head-on.

Earlier today, Hurtigruten Norway unveiled the first designs for a zero-emission cruise ship scheduled to debut by the end of the decade. First announced in March 2022 as “Sea Zero,” Hurtigruten (Norwegian for “the Fast Route”) showed off its initial concept art for the craft on Wednesday. The vessel features three autonomous, retractable, 50m-high sail wing rigs housing roughly 1,500-square-meters of solar panels. Alongside the sails, the ship will be powered by multiple 60-megawatt batteries that recharge while in port, as well as wind technology. Other futuristic additions to the vessel will include AI maneuvering capabilities, retractable thrusters, contra-rotating propellers, advanced hull coatings, and proactive hull cleaning tech.

[Related: Care about the planet? Skip the cruise, for now.]

“Following a rigorous feasibility study, we have pinpointed the most promising technologies for our groundbreaking future cruise ships,” said Hurtigruten Norway CEO Hedda Felin. Henrik Burvang, Research and Innovation Manager at VARD, the company behind the ship concept designs, added the forthcoming boat’s streamlined shape, alongside its hull and propulsion advances, will reduce energy demand. Meanwhile, VARD is “developing new design tools and exploring new technologies for energy efficiency,” said Burvang.

With enhanced AI capabilities, the cruise ships’ crew bridge is expected to significantly shrink in size to resemble airplane cockpits, but Hurtigruten’s futuristic, eco-conscious designs don’t rest solely on its next-gen ship and crew. The 135-meter-long concept ship’s estimated 500 guests will have access to a mobile app capable of operating their cabins’ ventilation systems, as well as track their own water and energy consumption while aboard the vessel.

Concept art of zero-emission cruise ship sailing in Norway
Credit: VARD Design

Next up for Hurtigruten’s Sea Zero project is a two-year testing and development phase for the proposed tech behind the upcoming cruise ship, particularly focusing on battery production, propulsion, hull design, and sustainable practices. Meanwhile, the company will also look into onboard hotel operational improvements, which Hurtigruten states can consume as much as half a ship’s overall energy reserves.

Hurtigruten also understands if 2030 feels like a long time to wait until a zero-emission ship. In the meantime, the company has already upgraded two of its seven vessels to run on a battery-hybrid-power system, with a third on track to be retrofitted this fall.  Its additional vessels are being outfitted with an array of tech to CO2 emissions by 20-percent, and nitrogen oxides by as much as 80 percent.

The post This concept cruise ship will have solar-paneled sails, an AI copilot, and zero emissions appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
675 million people still didn’t have access to electricity in 2021 https://www.popsci.com/environment/united-nations-sdg-report/ Tue, 06 Jun 2023 19:00:00 +0000 https://www.popsci.com/?p=546305
Factory emitting pollution at sunset
The UN's latest report paints a grim picture of progress towards sustainability goals. Deposit Photos

A new report from the UN on Sustainable Development Goals progress shows the world is 'off track.'

The post 675 million people still didn’t have access to electricity in 2021 appeared first on Popular Science.

]]>
Factory emitting pollution at sunset
The UN's latest report paints a grim picture of progress towards sustainability goals. Deposit Photos

In 2015, the United Nations announced a series of interdependent Sustainable Development Goals (SDGs) meant to provide a “shared blueprint for peace and prosperity for people and the planet, now and into the future.” In the years since, the UN and various partner organizations have released periodic progress reports that assess global movement towards these benchmarks. The latest annual recap, published on Tuesday, focuses on SDG 7’s aim at providing “affordable, reliable, sustainable and modern energy” to the world, alongside universal access to clean cooking and electricity, doubling historic levels of efficiency improvements, and increasing renewable energy usage by the end of the decade.

The UN’s 2023 assessment of efforts so far? Not great.

According to the Tracking SDG 7: The Energy Progress Report, the world’s current pace is simply not en route to achieving “any of the 2030 targets.” Although the commission acknowledges some regions’ improvements in various areas such as renewable energy availability, the number of people globally lacking electricity access is likely to have actually increased for the first time in decades due to the ongoing energy crisis exacerbated by the ongoing Russian invasion of Ukraine. The report also explains the most pressing factors styming progress towards SDG 7 include the uncertain global economic outlook, high inflation, currency fluctuations, the growing number of countries dealing with debt distress, and supply chain issues.

[Related: 1 in 5 people are likely to live in dangerously hot climates by 2100.]

At humanity’s current trajectory, nearly 2 billion people will still lack clean cooking facilities in 2030, with another 660 million without reliable electricity access. The report’s summary notes that, according to the World Health Organization, over 3 million people die every year due to illnesses stemming from polluting technologies and fuel that increase exposure to toxic household air pollution.

“We must protect the next generation by acting now,” Tedros Adhanom Ghebreyesus, head of the World Health Organization, said in a statement. “Investing in clean and renewable solutions to support universal energy access is how we can make real change.” “Clean cooking technologies in homes and reliable electricity in healthcare facilities can play a crucial role in protecting the health of our most vulnerable populations,” Ghebreyesus added.

[Related: Extreme weather and energy insecurity can compound health risks.]

There is at least one bright spot in the discouraging report, however. According to the UN Statistics Division, even accounting for recent electrification slowdowns, the number of people lacking electricity has halved over the past ten years—down to 675 million in 2021 versus around 1.1 billion in 2010.

“Nonetheless, additional efforts and measures must urgently be put in place to ensure that the poorest and hardest-to-reach people are not left behind,” explained Stefan Schweinfest of the UN’s Statistics Division in the UN’s statement. “To reach universal access by 2030, the development community must scale up clean energy investments and policy support.”

The post 675 million people still didn’t have access to electricity in 2021 appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Electric cars are better for the environment, no matter the power source https://www.popsci.com/technology/are-electric-cars-better-for-the-environment/ Fri, 26 May 2023 14:00:00 +0000 https://www.popsci.com/?p=543822
Ioniq 6 EV
An Ioniq 6 electric vehicle. Hyundai

Experts say that across the board, EVs are a win compared to similar gas-powered vehicles.

The post Electric cars are better for the environment, no matter the power source appeared first on Popular Science.

]]>
Ioniq 6 EV
An Ioniq 6 electric vehicle. Hyundai

These days, it seems like every carmaker—from those focused on luxury options to those with an eye more toward the economical—is getting into electric vehicles. And with new US policies around purchasing incentives and infrastructure improvements, consumers might be more on board as well. But many people are still concerned about whether electric vehicles are truly better for the environment overall, considering certain questions surrounding their production process

Despite concerns about the pollution generated from mining materials for batteries and the manufacturing process for the EVs themselves, the environmental and energy experts PopSci spoke to say that across the board, electric vehicles are still better for the environment than similar gasoline or diesel-powered models. 

When comparing a typical commercial electric vehicle to a gasoline vehicle of the same size, there are benefits across many different dimensions

“We do know, for instance, if we’re looking at carbon dioxide emissions, greenhouse gas emissions, that electric vehicles operating on the typical electric grid can end up with fewer greenhouse gas emissions over the life of their vehicle,” says Dave Gohlke, an energy and environmental analyst at Argonne National Lab. “The fuel consumption (using electricity to generate the fuel as opposed to burning petroleum) ends up releasing fewer emissions per mile and over the course of the vehicle’s expected lifetime.”

[Related: An electrified car isn’t the same thing as an electric one. Here’s the difference.]

How the electricity gets made

With greenhouse gas emissions, it’s also worth considering how the electricity for charging the EV is generated. Electricity made by a coal- or oil-burning plant will have higher emissions compared to a natural gas plant, while nuclear and renewable energy will have the fewest emissions. But even an electric vehicle that got its juice from a coal plant tends to have fewer emissions compared to a gasoline vehicle of the same size, Gohlke says. “And that comes down to the fact that a coal power plant is huge. It’s able to generate electricity at a better scale, [be] more efficient, as opposed to your relatively small engine that fits in the hood of your car.” Power plants could additionally have devices in place to scrub their smokestacks or capture some of the emissions that arise.  

EVs also produce no tailpipe emissions, which means reductions in particulate matter or in smog precursors that contribute to local air pollution.

“The latest best evidence right now indicates that in almost everywhere in the US, electric vehicles are better for the environment than conventional vehicles,” says Kenneth Gillingham, professor of environmental and energy economics at Yale School of the Environment. “How much better for the environment depends on where you charge and what time you charge.”

Electric motors tend to be more efficient compared to the spark ignition engine used in gasoline cars or the compression ignition engine used in diesel cars, where there’s usually a lot of waste heat and wasted energy.

Let’s talk about EV production

“It’s definitely the case that any technology has downsides. With technology you have to use resources, [the] raw materials we have available, and convert them to a new form,” says Jessika Trancik, a professor of data, systems, and society at the Massachusetts Institute of Technology. “And that usually comes with some environmental impacts. No technology is perfect in that sense, but when it comes to evaluating a technology, we have to think of what services it’s providing, and what technology providing the same service it’s replacing.”

Creating an EV produces pollution during the manufacturing process. “Greenhouse gas emissions associated with producing an electric vehicle are almost twice that of an internal combustion vehicle…that is due primarily to the battery. You’re actually increasing greenhouse gas emissions to produce the vehicle, but there’s a net overall lifecycle benefit or reduction because of the significant savings in the use of the vehicle,” says Gregory Keoleian, the director of the Center for Sustainable Systems at the University of Michigan. “We found in terms of the overall lifecycle, on average, across the United States, taking into account temperature effects, grid effects, there was 57 percent reduction in greenhouse gas emissions for a new electric vehicle compared to a new combustion engine vehicle.” 

In terms of reducing greenhouse gas emissions associated with operating the vehicles, fully battery-powered electric vehicles were the best, followed by plug-in hybrids, and then hybrids, with internal combustion engine vehicles faring the worst, Keoleian notes. Range anxiety might still be top of mind for some drivers, but he adds that households with more than one vehicle can consider diversifying their fleet to add an EV for everyday use, when appropriate, and save the gas vehicle (or the gas feature on their hybrids) for longer trips.

The breakeven point at which the cost of producing and operating an electric vehicle starts to gain an edge over a gasoline vehicle of similar make and model occurs at around two years in, or around 20,000 to 50,000 miles. But when that happens can vary slightly on a case-by-case basis. “If you have almost no carbon electricity, and you’re charging off solar panels on your own roof almost exclusively, that breakeven point will be sooner,” says Gohlke. “If you’re somewhere with a very carbon intensive grid, that breakeven point will be a little bit later. It depends on the style of your vehicle as well because of the materials that go into it.” 

[Related: Why solid-state batteries are the next frontier for EV makers]

For context, Gohlke notes that the average EV age right now is around 12 years old based on registration data. And these vehicles are expected to drive approximately 200,000 miles over their lifetime. 

“Obviously if you drive off your dealer’s lot and you drive right into a light pole and that car never takes more than a single mile, that single vehicle will have had more embedded emissions than if you had wrecked a gasoline car on your first drive,” says Gohlke. “But if you look at the entire fleet of vehicles, all 200-plus-million vehicles that are out there and how long we expect them to survive, over the life of the vehicle, each of those electric vehicles is expected to consume less energy and emit lower emissions than the corresponding gas vehicle would’ve been.”

To put things in perspective, Gillingham says that extracting and transporting fossil fuels like oil is energy intensive as well. When you weigh those factors, electric vehicle production doesn’t appear that much worse than the production of gasoline vehicles, he says. “Increasingly, they’re actually looking better depending on the battery chemistry and where the batteries are made.” 

And while it’s true that there are issues with mines, the petrol economy has damaged a lot of the environment and continues to do so. That’s why improving individual vehicle efficiency needs to be paired with reducing overall consumption.

EV batteries are getting better

Mined materials like rare metals can have harmful social and environmental effects, but that’s an economy-wide problem. There are many metals that are being used in batteries, but the use of metals is nothing new, says Trancik. Metals can be found in a range of household products and appliances that many people use in their daily lives. 

Plus, there have been dramatic improvements in battery technology and the engineering of the vehicle itself in the past decade. The batteries have become cheaper, safer, more durable, faster charging, and longer lasting. 

“There’s still a lot of room to improve further. There’s room for improved chemistry of the batteries and improved packaging and improved coolant systems and software that manages the batteries,” says Gillingham.

The two primary batteries used in electric vehicles today are NMC (nickel-manganese-cobalt) and LFP (lithium-ferrous-phosphate). NMC batteries tend to use more precious metals like cobalt from the Congo, but they are also more energy dense. LFP uses more abundant metals. And although the technology is improving fast, it’s still in an early stage, sensitive to cold weather, and not quite as energy dense. LFP tends to be good for utility scale cases, like for storing electricity on the grid. 

[Related: Could swappable EV batteries replace charging stations?]

Electric vehicles also offer an advantage when it comes to fewer trips to the mechanic; conventional vehicles have more moving parts that can break down. “You’re more likely to be doing maintenance on a conventional vehicle,” says Gillingham. He says that there have been Teslas in his studies that are around eight years old, with 300,000 miles on them, which means that even though the battery does tend to degrade a little every year, that degradation is fairly modest.

Eventually, if the electric vehicle markets grow substantially, and there’s many of these vehicles in circulation, reusing the metals in the cars can increase their benefits. “This is something that you can’t really do with the fossil fuels that have already been combusted in an internal combustion engine,” says Trancik. “There is a potential to set up that circularity in the supply chain of those metals that’s not readily done with fossil fuels.”

Since batteries are fairly environmentally costly, the best case is for consumers who are interested in EVs to get a car with a small battery, or a plug-in hybrid electric car that runs on battery power most of the time. “A Toyota Corolla-sized car, maybe with some hybridization, could in many cases, be better for the environment than a gigantic Hummer-sized electric vehicle,” says Gillingham. (The charts in this New York Times article help visualize that distinction.) 

Where policies could help

Electric vehicles are already better for the environment and becoming increasingly better for the environment. 

The biggest factor that could make EVs even better is if the electrical grid goes fully carbon free. Policies that provide subsidies for carbon-free power, or carbon taxes to incentivize cleaner power, could help in this respect. 

The other aspect that would make a difference is to encourage more efficient electric vehicles and to discourage the production of enormous electric vehicles. “Some people may need a pickup truck for work. But if you don’t need a large car for an actual activity, it’s certainly better to have a more reasonably sized car,” Gillingham says.  

Plus, electrifying public transportation, buses, and vehicles like the fleet of trucks run by the USPS can have a big impact because of how often they’re used. Making these vehicles electric can reduce air pollution from idling, and routes can be designed so that they don’t need as large of a battery.  

“The rollout of EVs in general has been slower than demand would support…There’s potentially a larger market for EVs,” Gillingham says. The holdup is due mainly to supply chain problems

Switching over completely to EVs is, of course, not the end-all solution for the world’s environmental woes. Currently, car culture is very deeply embedded in American culture and consumerism in general, Gillingham says, and that’s not easy to change. When it comes to climate policy around transportation, it needs to address all the different modes of transportation that people use and the industrial energy services to bring down greenhouse gas emissions across the board. 

The greenest form of transportation is walking, followed by biking, followed by using public transit. Electrifying the vehicles that can be electrified is great, but policies should also consider the ways cities are designed—are they walkable, livable, and have a reliable public transit system connecting communities to where they need to go? 

“There’s definitely a number of different modes of transport that need to be addressed and green modes of transport that need to be supported,” says Trancik. “We really need to be thinking holistically about all these ways to reduce greenhouse gas emissions.”

The post Electric cars are better for the environment, no matter the power source appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
How an innovative battery system in the Bronx will help charge up NYC’s grid https://www.popsci.com/technology/ninedot-battery-energy-storage-system-bronx/ Sat, 13 May 2023 11:00:00 +0000 https://www.popsci.com/?p=540875
The four white units are the batteries, which can provide about three megawatts of power over four hours.
The four white units are the batteries, which can provide about three megawatts of power over four hours. Rob Verger

The state has a goal of getting six gigawatts of battery storage online by 2030. Take an inside look at how one small system will work.

The post How an innovative battery system in the Bronx will help charge up NYC’s grid appeared first on Popular Science.

]]>
The four white units are the batteries, which can provide about three megawatts of power over four hours.
The four white units are the batteries, which can provide about three megawatts of power over four hours. Rob Verger

On a small patch of land in the northeast Bronx in New York City sits a tidy but potent battery storage system. Located across the street from a beige middle school building, and not too far from a Planet Fitness and a Dollar Tree, the battery system is designed to send power into the grid at peak moments of demand on hot summer afternoons and evenings. 

New York state has a goal of getting a whopping six gigawatts of battery storage systems online in the next seven years, and this system, at about three megawatts, is a very small but hopefully helpful part of that. It’s intended to be able to send out those three megawatts of power over a four-hour period, typically between 4 pm and 8 pm on the toastiest days of the year, with the goal of making a burdened power grid a bit less stressed and ideally a tad cleaner. 

The local power utility, Con Edison, recently connected the battery system to the grid. Here’s how it works, and why systems like this are important.

From power lines to batteries, and back again

The source of the electricity for these batteries is the existing power distribution lines that run along the top of nearby poles. Those wires carry power at 13,200 volts, but the battery system itself needs to work with a much lower voltage. That’s why before the power even gets to the batteries themselves, it needs to go through transformers. 

battery storage
Adam Cohen, of NineDot Energy, at the battery facility in January. Rob Verger

During a January tour of the site for Popular Science, Adam Cohen, the CTO of NineDot Energy, the company behind this project, opens a gray metal door. Behind it are transformers. “They look really neato,” he says. Indeed, they do look neat—three yellowish units that take that voltage and transform it into 480 volts. This battery complex is actually two systems that mirror each other, so other transformers are in additional equipment nearby. 

After those transformers do their job and convert the voltage to a lower number, the electricity flows to giant white Tesla Megapack battery units. Those batteries are large white boxes with padlocked cabinets, and above them is fire-suppression equipment. Not only do these battery units store the power, but they also have inverters to change the AC power to DC before the juice can be stored. When the power does flow out of the batteries, it’s converted back to AC power again. 

electrical transformers
Transformer units like these convert the electricity from 13,200 volts to 480 volts. Rob Verger

The battery storage system is designed to follow a specific rhythm. It will charge gradually between 10 pm and 8 am, Cohen says. That’s a time “when the grid has extra availability, the power is cheaper and cleaner, [and] the grid is not overstressed,” he says. When the day begins and the grid starts experiencing more demand, the batteries stop charging. 

In the summer heat, when there’s a “grid event,” that’s when the magic happens, Cohen says. Starting around 4 pm, the batteries will be able to send their power back out into the grid to help destress the system. They’ll be able to produce enough juice to power about 1,000 homes over that four-hour period, according to an estimate by the New York State Energy Research and Development Authority, or NYSERDA.

[Related: How the massive ‘flow battery’ coming to an Army facility in Colorado will work]

The power will flow back up into the same wires that charged them before, and then onto customers. The goal is to try to make the grid a little bit cleaner, or less dirty, than it would have been if the batteries didn’t exist. “It’s offsetting the dirty energy that would have been running otherwise,” Cohen says. 

Of course, the best case scenario would be for batteries to get their power from renewable sources, like solar or wind, and the site does have a small solar canopy that could send a teeny tiny bit of clean energy into the grid. But New York City and the other downstate zones near it currently rely very heavily on fossil fuels. For New York City in 2022 for example, utility-scale energy production was 100 percent from fossil fuels, according to a recent report from the New York Independent System Operator. (One of several solutions in the works to that problem involves a new transmission line.) What that means is that the batteries will be drawing power from a fossil-fuel dominant grid, but doing so at nighttime when that grid is hopefully less polluting. 

Nine Dot Energy says that this is the first use of Tesla Megapacks in New York City.
NineDot Energy says that this is the first use of Tesla Megapacks in New York City. Rob Verger

How systems like these can help

Electricity is very much an on-demand product. What we consume “has to be made right now,” Cohen notes from behind the wheel of his Nissan Leaf, as we drive towards the battery storage site in the Bronx on a Friday in January. Batteries, of course, can change that dynamic, storing the juice for when it’s needed. 

This project in the Bronx is something of an electronic drop in a bucket: At three megawatts, the batteries represent a tiny step towards New York State’s goal to have six gigawatts, or 6,000 megawatts, of battery storage on the grid by 2030. Even though this one facility in the Bronx represents less than one percent of that goal, it can still be useful, says Schuyler Matteson, a senior advisor focusing on energy storage and policy at NYSERDA. “Small devices play a really important role,” he says. 

One of the ways that small devices like these can help is they can be placed near the people who are using it in their homes or businesses, so that electricity isn’t lost as it is transmitted in from further away. “They’re very close to customers on the distribution network, and so when they’re providing power at peak times, they’re avoiding a lot of the transmission losses, which can be anywhere from five to eight percent of energy,” Matteson says. 

And being close to a community provides interesting opportunities. A campus of the Bronx Charter Schools for Better Learning sits on the third floor of the middle school across the street. There, two dozen students have been working in collaboration with a local artist, Tijay Mohammed, to create a mural that will eventually hang on the green fence in front of the batteries. “They are so proud to be associated with the project,” says Karlene Buckle, the manager of the enrichment program at the schools.

Student council representatives at the Bronx Charter Schools for Better Learning (BBL2) participate in a mural project for the battery facility.
Student council representatives at the Bronx Charter Schools for Better Learning (BBL2) participate in a mural project for the battery facility. Kevin Melendez / Bronx Charter Schools for Better Learning

Grid events

The main benefit a facility like this can have is the way it helps the grid out on a hot summer day. That’s because when New York City experiences peak temperatures, energy demand peaks too, as everyone cranks up their air conditioners. 

To meet that electricity demand, the city relies on its more than one dozen peaker plants, which are dirtier and less efficient than an everyday baseline fossil fuel plant. Peaker plants disproportionately impact communities located near them. “The public health risks of living near peaker plants range from asthma to cancer to death, and this is on top of other public health crises and economic hardships already faced in environmental justice communities,” notes Jennifer Rushlow, the dean of the School for the Environment at Vermont Law and Graduate School via email. The South Bronx, for example, has peaker plants, and the borough as a whole has an estimated 22,855 cases of pediatric asthma, according to the American Lung Association. Retiring them or diminishing their use isn’t just for energy security—it’s an environmental justice issue.

So when power demand peaks, “what typically happens is we have to ramp up additional natural gas facilities, or even in some instances, oil facilities, in the downstate region to provide that peak power,” Matteson says. “And so every unit of storage we can put down there to provide power during peak times offsets some of those dirty, marginal units that we would have to ramp up otherwise.” 

By charging at night, instead of during the day, and then sending the juice out at peak moments, “you’re actually offsetting local carbon, you’re offsetting local particulate matter, and that’s having a really big benefit of the air quality and health impacts for New York City,” he says.  

[Related: At New York City’s biggest power plant, a switch to clean energy will help a neighborhood breathe easier]

Imagine, says Matteson, that a peaker plant is producing 45 megawatts of electricity. A 3-megawatt battery system coming online could mean that operators could dial down the dirty plant to 42 megawatts instead. But in an ideal world, it doesn’t come online at all. “We want 15 of [these 3 megawatt] projects to add up to 45 megawatts, and so if they can consistently show up at peak times, maybe that marginal dirty generator doesn’t even get called,” he says. “If that happens enough, maybe they retire.” 

Nationally, most of the United States experiences a peak need for electricity on hot summer days, just like New York City does, with a few geographic exceptions, says Paul Denholm, a senior research fellow focusing on energy storage at the National Renewable Energy Laboratory in Colorado. “Pretty much most of the country peaks during the summertime, in those late afternoons,” he says. “And so we traditionally build gas turbines—we’ve got hundreds of gigawatts of gas turbines that have been installed for the past several decades.” 

A very small amount of power can come from this solar canopy on site—a reminder that the cleanest energy comes from renewable sources.
A very small amount of power can come from this solar canopy on site—a reminder that the cleanest energy comes from renewable sources. Rob Verger

While the three-megawatt project in the Bronx is not going to replace a peaker plant by any means, Denholm says that in general, the trend is moving towards batteries taking over what peaker plants do. “As those power plants get old and retire, you need to build something new,” he says. “Within the last five years, we’ve reached this tipping point, where storage can now outcompete new traditional gas-fired turbines on a life-cycle cost basis.” 

Right now, New York state has 279 megawatts of battery storage already online, which is around 5 percent of the total goal of 6 gigawatts. Denholm estimates that nationally, nearly nine gigawatts of battery storage are online already. 

“There’s significant quantifiable benefits to using [battery] storage as peaker,” Denholm says. One of those benefits is a fewer local emissions, which is important because “a lot of these peaker plants are in places that have historically been [environmental-justice] impacted regions.” 

“Even when they’re charging off of fossil plants, they’re typically charging off of more efficient units,” he adds. 

If all goes according to plan, the batteries will start discharging their juice this summer, on the most sweltering days. 

The post How an innovative battery system in the Bronx will help charge up NYC’s grid appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Microsoft thinks this startup can deliver on nuclear fusion by 2028 https://www.popsci.com/technology/microsoft-nuclear-fusion-helion/ Wed, 10 May 2023 20:00:00 +0000 https://www.popsci.com/?p=540363
Helion Trenta nuclear fusion generator testing in dark lighting
Microsoft aims to buy electricity generated by Helion's fusion generator in 2028. Helion

A startup called Helion thinks it can get a functioning nuclear fusion working within five years—a lofty goal, to say the least.

The post Microsoft thinks this startup can deliver on nuclear fusion by 2028 appeared first on Popular Science.

]]>
Helion Trenta nuclear fusion generator testing in dark lighting
Microsoft aims to buy electricity generated by Helion's fusion generator in 2028. Helion

After embracing artificial intelligence, Microsoft is taking another gamble on a promise from OpenAI’s CEO for one more moonshot goal—nuclear fusion. As CNET reports, Microsoft announced it has entered into a power purchase agreement with a startup company called Helion Energy that is slated to go into effect in 2028. Unlike AI’s very immediate realities, however, experts suspectbelieve the project’s extremely short timeframe and technological constraints make this timeline unrealisticcould easily prove disastrous.

Nuclear fusion is considered by many to be the end-all be-all of clean, virtually limitless energy production. Compared to fission reactions within traditional nuclear power plants that split atoms apart, fusion occurs when atoms are forced together within extremely high temperatures to produce a new, smaller mass atom, thus generating comparatively massive amounts of energy in the process. Researchers accomplished important fusion advancements in recent years, but a sustainable, affordable reactor has yet to be designed. What’s more, many experts estimate achieving this milestone won’t happen without “a few decades of research,” if ever.

Helion was founded in 2013, and received a $375 million investment from OpenAI CEO Sam Altman in 2021, shortly after it became the first private company to build a reactor component capable of reaching 100 million degrees Celsius (180 million degrees Fahrenheit). The optimum temperature for fusion, however, is roughly double that temperature. Meanwhile, Altman’s OpenAI itself garnered a massive partnership with Microsoft earlier this year, and has since integrated its high-profile generative artificial intelligence programming into its products, albeit not without its own controversy.

[Related: Physicists want to create energy like stars do. These two ways are their best shot.]

Helion aims to have its first fusion generator online in 2028. This generator would theoretically provide at least 50 megawatts following a one-year ramp up period—enough energy to power roughly 40,000 homes near a yet-to-be-determined facility location in Washington state. From there, Microsoft plans to pay Helion for its electricity generation as part of its roadmap to match its entire energy consumption with zero-carbon energy purchases by the end of the decade. As CNBC notes, because it’s a power purchase agreement, Helion could face financial penalties for not delivering on its aggressive goal.

In 2015, Helion’s CEO David Kirtley estimated their company would achieve “scientific net energy gain” in nuclear fusion within three years. Within nuclear fusion research, this energy gain refers to the ability to viably emit more power than it takes to produce. When asked this week by MIT Technology Review if Helion met those goals, a representative declined to comment, citing competitiveness concerns, but said its “initial timeline projections” had assumed the company would raise funds faster than it ultimately managed.

“We still have a lot of work to do,” Helion CEO David Kirtley also admitted in a statement released Wednesday,  but we are confident in our ability to deliver the world’s first fusion power facility.”

The post Microsoft thinks this startup can deliver on nuclear fusion by 2028 appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
How a 14-year-old kid became the youngest person to achieve nuclear fusion https://www.popsci.com/science/article/2012-02/boy-who-played-fusion/ Mon, 18 Mar 2019 21:22:34 +0000 https://www.popsci.com/uncategorized/science-article-2012-02-boy-who-played-fusion/
Taylor Wilson, the boy who built a nuclear reactor as a kid, in his kitchen with his family
Taylor Wilson moved to suburban Reno, Nevada, with his parents, Kenneth and Tiffany, and his brother Joey to attend Davidson Academy, a school for gifted students. Bryce Duffy

Taylor Wilson always dreamed of creating a star. Then he became one.

The post How a 14-year-old kid became the youngest person to achieve nuclear fusion appeared first on Popular Science.

]]>
Taylor Wilson, the boy who built a nuclear reactor as a kid, in his kitchen with his family
Taylor Wilson moved to suburban Reno, Nevada, with his parents, Kenneth and Tiffany, and his brother Joey to attend Davidson Academy, a school for gifted students. Bryce Duffy

This story from the March 2012 issue of Popular Science covered the nuclear fusion experiments of Taylor Wilson, who was then 16. Wilson is currently 28 and a nuclear physicist who’s collaborated with multiple US agencies on developing reactors and defense technology. The author of this profile, Tom Clynes, went on to write a book about Wilson titled The Boy Who Played With Fusion.

“PROPULSION,” the nine-year-old says as he leads his dad through the gates of the U.S. Space and Rocket Center in Huntsville, Alabama. “I just want to see the propulsion stuff.”

A young woman guides their group toward a full-scale replica of the massive Saturn V rocket that brought America to the moon. As they duck under the exhaust nozzles, Kenneth Wilson glances at his awestruck boy and feels his burden beginning to lighten. For a few minutes, at least, someone else will feed his son’s boundless appetite for knowledge.

Then Taylor raises his hand, not with a question but an answer. He knows what makes this thing, the biggest rocket ever launched, go up.

And he wants—no, he obviously needs—to tell everyone about it, about how speed relates to exhaust velocity and dynamic mass, about payload ratios, about the pros and cons of liquid versus solid fuel. The tour guide takes a step back, yielding the floor to this slender kid with a deep-Arkansas drawl, pouring out a torrent of Ph.D.-level concepts as if there might not be enough seconds in the day to blurt it all out. The other adults take a step back too, perhaps jolted off balance by the incongruities of age and audacity, intelligence and exuberance.

As the guide runs off to fetch the center’s director—You gotta see this kid!—Kenneth feels the weight coming down on him again. What he doesn’t understand just yet is that he will come to look back on these days as the uncomplicated ones, when his scary-smart son was into simple things, like rocket science.

This is before Taylor would transform the family’s garage into a mysterious, glow-in-the-dark cache of rocks and metals and liquids with unimaginable powers. Before he would conceive, in a series of unlikely epiphanies, new ways to use neutrons to confront some of the biggest challenges of our time: cancer and nuclear terrorism. Before he would build a reactor that could hurl atoms together in a 500-million-degree plasma core—becoming, at 14, the youngest individual on Earth to achieve nuclear fusion.

WHEN I MEET Taylor Wilson, he is 16 and busy—far too busy, he says, to pursue a driver’s license. And so he rides shotgun as his father zigzags the family’s Land Rover up a steep trail in the Virginia Mountains north of Reno, Nevada, where they’ve come to prospect for uranium.

From the backseat, I can see Taylor’s gull-like profile, his forehead plunging from under his sandy blond bangs and continuing, in an almost unwavering line, along his prominent nose. His thinness gives him a wraithlike appearance, but when he’s lit up about something (as he is most waking moments), he does not seem frail. He has spent the past hour—the past few days, really—talking, analyzing, and breathlessly evangelizing about nuclear energy. We’ve gone back to the big bang and forward to mutually assured destruction and nuclear winter. In between are fission and fusion, Einstein and Oppenheimer, Chernobyl and Fukushima, matter and antimatter.

“Where does it come from?” Kenneth and his wife, Tiffany, have asked themselves many times. Kenneth is a Coca-Cola bottler, a skier, an ex-football player. Tiffany is a yoga instructor. “Neither of us knows a dang thing about science,” Kenneth says.

Almost from the beginning, it was clear that the older of the Wilsons’ two sons would be a difficult child to keep on the ground. It started with his first, and most pedestrian, interest: construction. As a toddler in Texarkana, the family’s hometown, Taylor wanted nothing to do with toys. He played with real traffic cones, real barricades. At age four, he donned a fluorescent orange vest and hard hat and stood in front of the house, directing traffic. For his fifth birthday, he said, he wanted a crane. But when his parents brought him to a toy store, the boy saw it as an act of provocation. “No,” he yelled, stomping his foot. “I want a real one.”

This is about the time any other father might have put his own foot down. But Kenneth called a friend who owns a construction company, and on Taylor’s birthday a six-ton crane pulled up to the party. The kids sat on the operator’s lap and took turns at the controls, guiding the boom as it swung above the rooftops on Northern Hills Drive.

To the assembled parents, dressed in hard hats, the Wilsons’ parenting style must have appeared curiously indulgent. In a few years, as Taylor began to get into some supremely dangerous stuff, it would seem perilously laissez-faire. But their approach to child rearing is, in fact, uncommonly intentional. “We want to help our children figure out who they are,” Kenneth says, “and then do everything we can to help them nurture that.”

Looking up, they watched as a small mushroom cloud rose, unsettlingly, over the Wilsons’ yard.

At 10, Taylor hung a periodic table of the elements in his room. Within a week he memorized all the atomic numbers, masses and melting points. At the family’s Thanksgiving gathering, the boy appeared wearing a monogrammed lab coat and armed with a handful of medical lancets. He announced that he’d be drawing blood from everyone, for “comparative genetic experiments” in the laboratory he had set up in his maternal grandmother’s garage. Each member of the extended family duly offered a finger to be pricked.

The next summer, Taylor invited everyone out to the backyard, where he dramatically held up a pill bottle packed with a mixture of sugar and stump remover (potassium nitrate) that he’d discovered in the garage. He set the bottle down and, with a showman’s flourish, ignited the fuse that poked out of the top. What happened next was not the firecracker’s bang everyone expected, but a thunderous blast that brought panicked neighbors running from their houses. Looking up, they watched as a small mushroom cloud rose, unsettlingly, over the Wilsons’ yard.

For his 11th birthday, Taylor’s grandmother took him to Books-A-Million, where he picked out The Radioactive Boy Scout, by Ken Silverstein. The book told the disquieting tale of David Hahn, a Michigan teenager who, in the mid-1990s, attempted to build a breeder reactor in a backyard shed. Taylor was so excited by the book that he read much of it aloud: the boy raiding smoke detectors for radioactive americium . . . the cobbled-together reactor . . . the Superfund team in hazmat suits hauling away the family’s contaminated belongings. Kenneth and Tiffany heard Hahn’s story as a cautionary tale. But Taylor, who had recently taken a particular interest in the bottom two rows of the periodic table—the highly radioactive elements—read it as a challenge. “Know what?” he said. “The things that kid was trying to do, I’m pretty sure I can actually do them.”

Taylor Wilson in a red sweater looking to the right of the camera
Both Wilson boys both went to a science and mathematics school for gifted students. Bryce Duffy

A rational society would know what to do with a kid like Taylor Wilson, especially now that America’s technical leadership is slipping and scientific talent increasingly has to be imported. But by the time Taylor was 12, both he and his brother, Joey, who is three years younger and gifted in mathematics, had moved far beyond their school’s (and parents’) ability to meaningfully teach them. Both boys were spending most of their school days on autopilot, their minds wandering away from course work they’d long outgrown.

David Hahn had been bored too—and, like Taylor, smart enough to be dangerous. But here is where the two stories begin to diverge. When Hahn’s parents forbade his atomic endeavors, the angry teenager pressed on in secret. But Kenneth and Tiffany resisted their impulse to steer Taylor toward more benign pursuits. That can’t be easy when a child with a demonstrated talent and fondness for blowing things up proposes to dabble in nukes.

Kenneth and Tiffany agreed to let Taylor assemble a “survey of everyday radioactive materials” for his school’s science fair. Kenneth borrowed a Geiger counter from a friend at Texarkana’s emergency-management agency. Over the next few weekends, he and Tiffany shuttled Taylor around to nearby antique stores, where he pointed the clicking detector at old
radium-dial alarm clocks, thorium lantern mantles and uranium-glazed Fiesta plates. Taylor spent his allowance money on a radioactive dining set.

Drawn in by what he calls “the surprise properties” of radioactive materials, he wanted to know more. How can a speck of metal the size of a grain of salt put out such tremendous amounts of energy? Why do certain rocks expose film? Why does one isotope decay away in a millionth of a second while another has a half-life of two million years?

As Taylor began to wrap his head around the mind-blowing mysteries at the base of all matter, he could see that atoms, so small but potentially so powerful, offered a lifetime’s worth of secrets to unlock. Whereas Hahn’s resources had been limited, Taylor found that there was almost no end to the information he could find on the Internet, or to the oddities that he could purchase and store in the garage.

On top of tables crowded with chemicals and microscopes and germicidal black lights, an expanding array of nuclear fuel pellets, chunks of uranium and “pigs” (lead-lined containers) began to appear. When his parents pressed him about safety, Taylor responded in the convoluted jargon of inverse-square laws and distance intensities, time doses and roentgen submultiples. With his newfound command of these concepts, he assured them, he could master the furtive energy sneaking away from those rocks and metals and liquids—a strange and ever-multiplying cache that literally cast a glow into the corners of the garage.

Kenneth asked a nuclear-pharmacist friend to come over to check on Taylor’s safety practices. As far as he could tell, the friend said, the boy was getting it right. But he warned that radiation works in quick and complex ways. By the time Taylor learned from a mistake, it might be too late.

Lead pigs and glazed plates were only the beginning. Soon Taylor was getting into more esoteric “naughties”—radium quack cures, depleted uranium, radio-luminescent materials—and collecting mysterious machines, such as the mass spectrometer given to him by a former astronaut in Houston. As visions of Chernobyl haunted his parents, Taylor tried to reassure them. “I’m the responsible radioactive boy scout,” he told them. “I know what I’m doing.”

One afternoon, Tiffany ducked her head out of the door to the garage and spotted Taylor, in his canary yellow nuclear-technician’s coveralls, watching a pool of liquid spreading across the concrete floor. “Tay, it’s time for supper.”
“I think I’m going to have to clean this up first.”
“That’s not the stuff you said would kill us if it broke open, is it?”
“I don’t think so,” he said. “Not instantly.”

THAT SUMMER, Kenneth’s daughter from a previous marriage, Ashlee, then a college student, came to live with the Wilsons. “The explosions in the backyard were getting to be a bit much,” she told me, shortly before my own visit to the family’s home. “I could see everyone getting frustrated. They’d say something and Taylor would argue back, and his argument would be legitimate. He knows how to out-think you. I was saying, ‘You guys need to be parents. He’s ruling the roost.’ “

“What she didn’t understand,” Kenneth says, “is that we didn’t have a choice. Taylor doesn’t understand the meaning of ‘can’t.’ “

“And when he does,” Tiffany adds, “he doesn’t listen.”

“Looking back, I can see that,” Ashlee concedes. “I mean, you can tell Taylor that the world doesn’t revolve around him. But he doesn’t really get that. He’s not being selfish, it’s just that there’s so much going on in his head.”

Tiffany, for her part, could have done with less drama. She had just lost her sister, her only sibling. And her mother’s cancer had recently come out of remission. “Those were some tough times,” Taylor tells me one day, as he uses his mom’s gardening trowel to mix up a batch of yellowcake (the partially processed uranium that’s the stuff of WMD infamy) in a five-gallon bucket. “But as bad as it was with Grandma dying and all, that urine sure was something.”

Taylor looks sheepish. He knows this is weird. “After her PET scan she let me have a sample. It was so hot I had to keep it in a lead pig.

“The other thing is . . .” He pauses, unsure whether to continue but, being Taylor, unable to stop himself. “She had lung cancer, and she’d cough up little bits of tumor for me to dissect. Some people might think that’s gross, but I found it scientifically very interesting.”

What no one understood, at least not at first, was that as his grandmother was withering, Taylor was growing, moving beyond mere self-centeredness. The world that he saw revolving around him, the boy was coming to believe, was one that he could actually change.

The problem, as he saw it, is that isotopes for diagnosing and treating cancer are extremely short-lived. They need to be, so they can get in and kill the targeted tumors and then decay away quickly, sparing healthy cells. Delivering them safely and on time requires expensive handling—including, often, delivery by private jet. But what if there were a way to make those medical isotopes at or near the patients? How many more people could they reach, and how much earlier could they reach them? How many more people like his grandmother could be saved?

As Taylor stirred the toxic urine sample, holding the clicking Geiger counter over it, inspiration took hold. He peered into the swirling yellow center, and the answer shone up at him, bright as the sun. In fact, it was the sun—or, more precisely, nuclear fusion, the process (defined by Einstein as E=mc2) that powers the sun. By harnessing fusion—the moment when atomic nuclei collide and fuse together, releasing energy in the process—Taylor could produce the high-energy neutrons he would need to irradiate materials for medical isotopes. Instead of creating those isotopes in multimillion-dollar cyclotrons and then rushing them to patients, what if he could build a fusion reactor small enough, cheap enough and safe enough to produce isotopes as needed, in every hospital in the world?

At that point, only 10 individuals had managed to build working fusion reactors. Taylor contacted one of them, Carl Willis, then a 26-year-old Ph.D. candidate living in Albuquerque, and the two hit it off. But Willis, like the other successful fusioneers, had an advanced degree and access to a high-tech lab and precision equipment. How could a middle-school kid living on the Texas/Arkansas border ever hope to make his own star?

Taylor Wilson in a hazmat suit and gas mask in his nuclear lab
The teen set up a nuclear laboratory in the family garage. Occasionally he uses it to process uranium ore into yellowcake. Bryce Duffy

When Taylor was 13, just after his grandmother’s doctor had given her a few weeks to live, Ashlee sent Tiffany and Kenneth an article about a new school in Reno. The Davidson Academy is a subsidized public school for the nation’s smartest and most motivated students, those who score in the top 99.9th percentile on standardized tests. The school, which allows students to pursue advanced research at the adjacent University of Nevada–Reno, was founded in 2006 by software entrepreneurs Janice and Robert Davidson. Since then, the Davidsons have championed the idea that the most underserved students in the country are those at the top.

On the family’s first trip to Reno, even before Taylor and Joey were accepted to the academy, Taylor made an appointment with Friedwardt Winterberg, a celebrated physicist at the University of Nevada who had studied under the Nobel Prize–winning quantum theorist Werner Heisenberg. When Taylor told Winterberg that he wanted to build a fusion reactor, also called a fusor, the notoriously cranky professor erupted: “You’re 13 years old! And you want to play with tens of thousands of electron volts and deadly x-rays?” Such a project would be far too technically challenging and hazardous, Winterberg insisted, even for most doctoral candidates. “First you must master calculus, the language of science,” he boomed. “After that,” Tiffany said, “we didn’t think it would go anywhere. Kenneth and I were a bit relieved.”

But Taylor still hadn’t learned the word “can’t.” In the fall, when he began at Davidson, he found the two advocates he needed, one in the office right next door to Winterberg’s. “He had a depth of understanding I’d never seen in someone that young,” says atomic physicist Ronald Phaneuf. “But he was telling me he wanted to build the reactor in his garage, and I’m thinking, ‘Oh my lord, we can’t let him do that.’ But maybe we can help him try to do it here.”

Phaneuf invited Taylor to sit in on his upper-division nuclear physics class and introduced him to technician Bill Brinsmead. Brinsmead, a Burning Man devotee who often rides a wheeled replica of the Little Boy bomb through the desert, was at first reluctant to get involved in this 13-year-old’s project. But as he and Phaneuf showed Taylor around the department’s equipment room, Brinsmead recalled his own boyhood, when he was bored and unchallenged and aching to build something really cool and difficult (like a laser, which he eventually did build) but dissuaded by most of the adults who might have helped.

Rummaging through storerooms crowded with a geeky abundance of electron microscopes and instrumentation modules, they came across a high-vacuum chamber made of thick-walled stainless steel, capable of withstanding extreme heat and negative pressure. “Think I could use that for my fusor?” Taylor asked Brinsmead. “I can’t think of a more worthy cause,” Brinsmead said.

NOW IT’S TIFFANY who drives, along a dirt road that wends across a vast, open mesa a few miles south of the runways shared by Albuquerque’s airport and Kirkland Air Force Base. Taylor has convinced her to bring him to New Mexico to spend a week with Carl Willis, whom Taylor describes as “my best nuke friend.” Cocking my ear toward the backseat, I catch snippets of Taylor and Willis’s conversation.

“The idea is to make a gamma-ray laser from stimulated decay of dipositronium.”

“I’m thinking about building a portable, beam-on-target neutron source.”

“Need some deuterated polyethylene?”

Willis is now 30; tall and thin and much quieter than Taylor. When he’s interested in something, his face opens up with a blend of amusement and curiosity. When he’s uninterested, he slips into the far-off distractedness that’s common among the super-smart. Taylor and Willis like to get together a few times a year for what they call “nuclear tourism”—they visit research facilities, prospect for uranium, or run experiments.

Earlier in the week, we prospected for uranium in the desert and shopped for secondhand laboratory equipment in Los Alamos. The next day, we wandered through Bayo Canyon, where Manhattan Project engineers set off some of the largest dirty bombs in history in the course of perfecting Fat Man, which leveled Nagasaki.

Today we’re searching for remnants of a “broken arrow,” military lingo for a lost nuclear weapon. While researching declassified military reports, Taylor discovered that a Mark 17 “Peacemaker” hydrogen bomb, which was designed to be 700 times as powerful as the bomb detonated over Hiroshima, was accidentally dropped onto this mesa in May 1957. For the U.S. military, it was an embarrassingly Strangelovian episode; the airman in the bomb bay narrowly avoided his own Slim Pickens moment when the bomb dropped from its gantry and smashed the B-36’s doors open. Although its plutonium core hadn’t been inserted, the bomb’s “spark plug” of conventional explosives and radioactive material detonated on impact, creating a fireball and a massive crater. A grazing steer was the only reported casualty.

Tiffany parks the rented SUV among the mesquite, and we unload metal detectors and Geiger counters and fan out across the field. “This,” says Tiffany, smiling as she follows her son across the scrubland, “is how we spend our vacations.”

Taylor Wilson walking in front of a snowy Nevada mountain range while hunting for radioactive material
Taylor has one of the most extensive collections of radioactive material in the world, much of which he found himself. Bryce Duffy

Willis says that when Taylor first contacted him, he was struck by the 12-year-old’s focus and forwardness—and by the fact that he couldn’t plumb the depth of Taylor’s knowledge with a few difficult technical questions. After checking with Kenneth, Willis sent Taylor some papers on fusion reactors. Then Taylor began acquiring pieces for his new machine.

Through his first year at Davidson, Taylor spent his afternoons in a corner of Phaneuf’s lab that the professor had cleared out for him, designing the reactor, overcoming tricky technical issues, tracking down critical parts. Phaneuf helped him find a surplus high-voltage insulator at Lawrence Berkeley National Laboratory. Willis, then working at a company that builds particle accelerators, talked his boss into parting with an extremely expensive high-voltage power supply.

With Brinsmead and Phaneuf’s help, Taylor stretched himself, applying knowledge from more than 20 technical fields, including nuclear and plasma physics, chemistry, radiation metrology and electrical engineering. Slowly he began to test-assemble the reactor, troubleshooting pesky vacuum leaks, electrical problems and an intermittent plasma field.

Shortly after his 14th birthday, Taylor and Brinsmead loaded deuterium fuel into the machine, brought up the power, and confirmed the presence of neutrons. With that, Taylor became the 32nd individual on the planet to achieve a nuclear-fusion reaction. Yet what would set Taylor apart from the others was not the machine itself but what he decided to do with it.

While still developing his medical isotope application, Taylor came across a report about how the thousands of shipping containers entering the country daily had become the nation’s most vulnerable “soft belly,” the easiest entry point for weapons of mass destruction. Lying in bed one night, he hit on an idea: Why not use a fusion reactor to produce weapons-sniffing neutrons that could scan the contents of containers as they passed through ports? Over the next few weeks, he devised a concept for a drive-through device that would use a small reactor to bombard passing containers with neutrons. If weapons were inside, the neutrons would force the atoms into fission, emitting gamma radiation (in the case of nuclear material) or nitrogen (in the case of conventional explosives). A detector, mounted opposite, would pick up the signature and alert the operator.

He entered the reactor, and the design for his bomb-sniffing application, into the Intel International Science and Engineering Fair. The Super Bowl of pre-college science events, the fair attracts 1,500 of the world’s most switched-on kids from some 50 countries. When Intel CEO Paul Otellini heard the buzz that a 14-year-old had built a working nuclear-fusion reactor, he went straight for Taylor’s exhibit. After a 20-minute conversation, Otellini was seen walking away, smiling and shaking his head in what looked like disbelief. Later, I would ask him what he was thinking. “All I could think was, ‘I am so glad that kid is on our side.’ “

For the past three years, Taylor has dominated the international science fair, walking away with nine awards (including first place overall), overseas trips and more than $100,000 in prizes. After the Department of Homeland Security learned of Taylor’s design, he traveled to Washington for a meeting with the DHS’s Domestic Nuclear Detection Office, which invited Taylor to submit a grant proposal to develop the detector. Taylor also met with then–Under Secretary of Energy Kristina Johnson, who says the encounter left her “stunned.”

“I would say someone like him comes along maybe once in a generation,” Johnson says. “He’s not just smart; he’s cool and articulate. I think he may be the most amazing kid I’ve ever met.”

And yet Taylor’s story began much like David Hahn’s, with a brilliant, high-flying child hatching a crazy plan to build a nuclear reactor. Why did one journey end with hazmat teams and an eventual arrest, while the other continues to produce an array of prizes, patents, television appearances, and offers from college recruiters?

The answer is, mostly, support. Hahn, determined to achieve something extraordinary but discouraged by the adults in his life, pressed on without guidance or oversight—and with nearly catastrophic results. Taylor, just as determined but socially gifted, managed to gather into his orbit people who could help him achieve his dreams: the physics professor; the older nuclear prodigy; the eccentric technician; the entrepreneur couple who, instead of retiring, founded a school to nurture genius kids. There were several more, but none so significant as Tiffany and Kenneth, the parents who overcame their reflexive—and undeniably sensible—inclinations to keep their Icarus-like son on the ground. Instead they gave him the wings he sought and encouraged him to fly up to the sun and beyond, high enough to capture a star of his own.

After about an hour of searching across the mesa, our detectors begin to beep. We find bits of charred white plastic and chunks of aluminum—one of which is slightly radioactive. They are remnants of the lost hydrogen bomb. I uncover a broken flange with screws still attached, and Taylor digs up a hunk of lead. “Got a nice shard here,” Taylor yells, finding a gnarled piece of metal. He scans it with his detector. “Unfortunately, it’s not radioactive.”

“That’s the kind I like,” Tiffany says.

Willis picks up a large chunk of the bomb’s outer casing, still painted dull green, and calls Taylor over. “Wow, look at that warp profile!” Taylor says, easing his scintillation detector up to it. The instrument roars its approval. Willis, seeing Taylor ogling the treasure, presents it to him. Taylor is ecstatic. “It’s a field of dreams!” he yells. “This place is loaded!”

Suddenly we’re finding radioactive debris under the surface every five or six feet—even though the military claimed that the site was completely cleaned up. Taylor gets down on his hands and knees, digging, laughing, calling out his discoveries. Tiffany checks her watch. “Tay, we really gotta go or we’ll miss our flight.”

“I’m not even close to being done!” he says, still digging. “This is the best day of my life!” By the time we manage to get Taylor into the car, we’re running seriously late. “Tay,” Tiffany says, “what are we going to do with all this stuff?”

“For $50, you can check it on as excess baggage,” Willis says. “You don’t label it, nobody knows what it is, and it won’t hurt anybody.” A few minutes later, we’re taping an all-too-flimsy box shut and loading it into the trunk. “Let’s see, we’ve got about 60 pounds of uranium, bomb fragments and radioactive shards,” Taylor says. “This thing would make a real good dirty bomb.”

In truth, the radiation levels are low enough that, without prolonged close-range exposure, the cargo poses little danger. Still, we stifle the jokes as we pull up to curbside check-in. “Think it will get through security?” Tiffany asks Taylor.

“There are no radiation detectors in airports,” Taylor says. “Except for one pilot project, and I can’t tell you which airport that’s at.”

As the skycap weighs the box, I scan the “prohibited items” sign. You can’t take paints, flammable materials or water on a commercial airplane. But sure enough, radioactive materials are not listed.

We land in Reno and make our way toward the baggage claim. “I hope that box held up,” Taylor says, as we approach the carousel. “And if it didn’t, I hope they give us back the radioactive goodies scattered all over the airplane.” Soon the box appears, adorned with a bright strip of tape and a note inside explaining that the package has been opened and inspected by the TSA. “They had no idea,” Taylor says, smiling, “what they were looking at.”

APART FROM THE fingerprint scanners at the door, Davidson Academy looks a lot like a typical high school. It’s only when the students open their mouths that you realize that this is an exceptional place, a sort of Hogwarts for brainiacs. As these math whizzes, musical prodigies and chess masters pass in the hallway, the banter flies in witty bursts. Inside humanities classes, discussions spin into intellectual duels.

Although everyone has some kind of advanced obsession, there’s no question that Taylor is a celebrity at the school, where the lobby walls are hung with framed newspaper clippings of his accomplishments. Taylor and I visit with the principal, the school’s founders and a few of Taylor’s friends. Then, after his calculus class, we head over to the university’s physics department, where we meet Phaneuf and Brinsmead.

Taylor’s reactor, adorned with yellow radiation-warning signs, dominates the far corner of Phaneuf’s lab. It looks elegant—a gleaming stainless-steel and glass chamber on top of a cylindrical trunk, connected to an array of sensors and feeder tubes. Peering through the small window into the reaction chamber, I can see the golf-ball-size grid of tungsten fingers that will cradle the plasma, the state of matter in which unbound electrons, ions and photons mix freely with atoms and molecules.

“OK, y’all stand back,” Taylor says. We retreat behind a wall of leaden blocks as he shakes the hair out of his eyes and flips a switch. He turns a knob to bring the voltage up and adds in some gas. “This is exactly how me and Bill did it the first time,” he says. “But now we’ve got it running even better.”

Through a video monitor, I watch the tungsten wires beginning to glow, then brightening to a vivid orange. A blue cloud of plasma appears, rising and hovering, ghostlike, in the center of the reaction chamber. “When the wires disappear,” Phaneuf says, “that’s when you know you have a lethal radiation field.”

I watch the monitor while Taylor concentrates on the controls and gauges, especially the neutron detector they’ve dubbed Snoopy. “I’ve got it up to 25,000 volts now,” Taylor says. “I’m going to out-gas it a little and push it up.”

Taylor’s reactor, adorned with yellow radiation-warning signs, dominates the far corner of the lab. It looks elegant—a gleaming stainless-steel and glass chamber on top of a cylindrical trunk, connected to an array of sensors and feeder tubes.

Willis’s power supply crackles. The reactor is entering “star mode.” Rays of plasma dart between gaps in the now-invisible grid as deuterium atoms, accelerated by the tremendous voltages, begin to collide. Brinsmead keeps his eyes glued to the neutron detector. “We’re getting neutrons,” he shouts. “It’s really jamming!”

Taylor cranks it up to 40,000 volts. “Whoa, look at Snoopy now!” Phaneuf says, grinning. Taylor nudges the power up to 50,000 volts, bringing the temperature of the plasma inside the core to an incomprehensible 580 million degrees—some 40 times as hot as the core of the sun. Brinsmead lets out a whoop as the neutron gauge tops out.

“Snoopy’s pegged!” he yells, doing a little dance. On the video screen, purple sparks fly away from the plasma cloud, illuminating the wonder in the faces of Phaneuf and Brinsmead, who stand in a half-orbit around Taylor. In the glow of the boy’s creation, the men suddenly look years younger.

Taylor keeps his thin fingers on the dial as the atoms collide and fuse and throw off their energy, and the men take a step back, shaking their heads and wearing ear-to-ear grins.

“There it is,” Taylor says, his eyes locked on the machine. “The birth of a star.”

Read more PopSci+ stories.

The post How a 14-year-old kid became the youngest person to achieve nuclear fusion appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
How the US is fighting wealth disparities in climate action https://www.popsci.com/environment/justice40-climate-change-environment-justice/ Mon, 08 May 2023 16:00:00 +0000 https://www.popsci.com/?p=539635
To ensure investment objectives are met, transparency in reporting and evaluation is necessary.
To ensure investment objectives are met, transparency in reporting and evaluation is necessary. DepositPhotos

A quick introduction to the Justice40 Initiative.

The post How the US is fighting wealth disparities in climate action appeared first on Popular Science.

]]>
To ensure investment objectives are met, transparency in reporting and evaluation is necessary.
To ensure investment objectives are met, transparency in reporting and evaluation is necessary. DepositPhotos

Back in 2021, President Joe Biden announced the administration’s new Justice40 Initiative through Executive Order 14008. The program’s aim is that 40 percent of the benefits of certain federal investments flow to disadvantaged communities. Investments related to climate change, clean energy, reduction of legacy pollution, and the development of water and wastewater infrastructure, among others, all fall within the initiative.

The administration doesn’t intend the program to be a one-time investment, but rather, a way to improve the distribution of the benefits of government programs and ensure that they reach disadvantaged communities. Since it was established, 19 federal agencies have released a total of nearly 470 covered programs, with three agencies joining just last month. While it’s promising that the administration recognizes the need to address long-standing equities, it’s critical to assess how they plan to make environmental justice a reality.

Marginalized and underserved communities must be prioritized to advance environmental justice

Hannah Perls, senior staff attorney at Harvard Law School’s Environmental and Energy Law Program (EELP), says that many of the environmental injustices around the country today are the result of a legacy of disinvestment in low-income communities. This is especially true in communities of color where “racist policies barred or discouraged public and private investment in housing, critical infrastructure, public transit, and natural spaces.”

[Related: Stronger pollution protections mean focusing on specific communities.]

These communities often face greater exposure to industrial pollution, higher health risks from deteriorating infrastructure, and more energy and housing burdens than wealthier, white communities, says Perls. They also lose out often in competitive federal funding processes—and in some cases, funding is intentionally withheld. This only reinforces existing wealth disparities. By explicitly targeting that 40 percent of federal climate investments reach these communities, the Justice 40 Initiative hopes to combat the legacy of disinvestment and equitably distribute the benefits of the transition to renewable energy, she adds.

To identify disadvantaged communities, the White House Council on Environmental Quality (CEQ) has put out its Climate and Economic Justice Screening Tool (CEJST), a geospatial mapping tool that identifies overburdened and underserved census tracts across all states.

“Agencies can build upon the CEJST as needed, again on a program-by-program basis,” says Perls. “One benefit of this flexibility is that agencies can incorporate burdens specific to their jurisdiction. For example, the Department of Energy’s definition incorporates five measures of energy burden and two measures of fossil dependence.”

The CEJST is an exciting starting point that the federal government can continue to refine. That said, “environmental justice burdens don’t necessarily follow census boundaries, so there should be opportunities for communities to make the case to receive federal dollars if their community is not identified by the tool,” says Silvia R. González, director of climate change, environmental justice, and health research at the UCLA Latino Policy and Politics Initiative.

How to ensure that the benefits reach disadvantaged communities

All covered programs are required to consult the community stakeholders, ensure their involvement in determining program benefits, and report data on said benefits. An established number of 40 percent provides clear guidelines and expectations for agencies. To strengthen that goal, a team of researchers and advocates recommend that the 40 percent be a minimum for direct investments in disadvantaged communities.

“A direct investment means the percentage is not just a goal that relies on counting trickle-down benefits,” says González, who was involved in the report. “The straightforward nature of a direct benefit strategy would enhance transparency and accountability to taxpayers because it is tough to measure trickle-down benefits.”

To ensure investment objectives are met, transparency in reporting and evaluation is necessary, she adds. Accountability mechanisms are a must in guaranteeing equitable, effective, and efficient implementation.

[Related: The hard truth of building clean solar farms.]

“We currently have no federal environmental justice law,” says Perls. “As a result, most of the administration’s environmental justice commitments, including the Justice40 Initiative, are established via Executive Order and are therefore not judicially enforceable.”

Fortunately, there are some ways to monitor how the government is living up to its promises. The administration recently published the first version of the Environmental Justice Scorecard, a government-wide assessment of the actions taken by federal agencies to achieve environmental justice goals. Harvard Law School’s EELP also has a Federal Environmental Justice Tracker that tracks the progress of the administration’s environmental justice commitments and other agency-specific initiatives.

Overall, experts say it’s a positive sign that the Justice40 Initiative has catalyzed critical discussions to face climate change and historical disinvestment head-on. But as with any ambitious policy agenda, the implementation will need to overcome many hurdles, says González. The most vulnerable communities tend to be those that are least resourced, and they should not get left behind. Some communities or households may be under-resourced due to language, technology, trust, and capacity barriers to programs that can help them develop financial and health resiliency. There will need to be capacity-building and technical assistance for under-resourced communities to apply for and manage these investments, she adds.

In general, there is strong potential for Justice40-covered programs to bring transformational change from the bottom up. The knowledge and lived experiences of disadvantaged communities could shape targeted investments to ensure that their needs are met. “I hope Justice40 builds a framework rooted in principles of self-governance and self-determination, direct engagement, and collaboration with communities,” says González, “instead of top-down solutions.”

The post How the US is fighting wealth disparities in climate action appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Could aquifers store renewable thermal energy? https://www.popsci.com/environment/aquifer-thermal-energy-storage/ Mon, 24 Apr 2023 14:00:00 +0000 https://www.popsci.com/?p=536221
Adding aquifer thermal energy storage to the grid could significantly reduce the consumption of petroleum products.
Adding aquifer thermal energy storage to the grid could significantly reduce the consumption of petroleum products. DepositPhotos

Renewable energy is tough to store—but a potential solution could be right under our feet.

The post Could aquifers store renewable thermal energy? appeared first on Popular Science.

]]>
Adding aquifer thermal energy storage to the grid could significantly reduce the consumption of petroleum products.
Adding aquifer thermal energy storage to the grid could significantly reduce the consumption of petroleum products. DepositPhotos

Decarbonizing the energy sector requires ramping up power generation from renewable sources. However, increasing renewable energy generation poses some challenges, like mismatches between production and demand. Output from renewables varies seasonally and annually due to insolation differences and trends in weather, which means there may be periods of over- and undergeneration.

Seasonal heating and cooling—usually the largest energy expenses in households—don’t align often with renewable energy generation patterns, says Amarasinghage T. Perera, an associate research scholar in the Andlinger Center for Energy and Environment at Princeton University. For instance, there is higher heating demand in the winter, but more renewable energy generation during the summer. In such cases, it’s important to store additional energy in the summer to cater to the winter heating demand, he adds. This explains why long-term energy storage is needed to support renewable technologies.

According to a recent study published in Applied Energy, underground water has the potential for storing much-needed renewable energy. This approach, called aquifer thermal energy storage (ATES), uses naturally occurring groundwater or aquifers for long-term storage of thermal energy that can be used to assist the heating and cooling of buildings, says Perera, who was involved in the study.

[Related: Scientists think we can get 90 percent clean energy by 2035.]

In an ATES system, there are two wells connected to the same groundwater reservoir. During the summer, cold groundwater is pumped up to provide cooling, warmed at the surface, and then stored. During the winter, the opposite happens—the warm groundwater is pumped up to provide heating, cooled at the surface, and then stored. The cycle repeats seasonally.

Energy storage is often discussed in relation to decarbonizing the transportation sector by replacing internal combustion engine vehicles with those supported by battery and hydrogen storage. However, for grid storage, the materials required to store electric charge in batteries have a high energy cost, while hydrogen storage results in significant energy losses. Perera says more research funding can help identify the broader potential of thermal energy storage technologies.

“Compared to conventional groundwater heat pumps, the extraction of heated or cooled groundwater which was previously injected into the subsurface enables a more efficient operation,” says Ruben Stemmle, a researcher from the Karlsruhe Institute of Technology (KIT)’s Institute of Applied Geosciences in Germany who was not involved in the study. ATES systems can also store excess heat from industrial processes, combined heat and power plants, or solar thermal energy. Overall, it helps bridge the seasonal mismatch between the demand and availability of thermal energy, he adds.

Long-term seasonal storage and demand-driven utilization of previously unused heat sources, like waste heat or excess solar thermal energy, can promote the decarbonization of the heating and cooling sector, as well as reduce primary energy consumption, says Stemmle.

According to the study, ATES can improve the flexibility of the energy system, allowing it to withstand fluctuations in renewable energy demand and generation from future climate variations. It could make urban energy infrastructure more resilient by preventing additional burdens on the grid during hot or cold months.

[Related: How can electrified buildings handle energy peaks?]

ATES has very high storage capacities due to large volumes of groundwater available in many areas like major groundwater basins and complex hydrological structures. This enables ATES application for district heating and cooling or large building complexes with high energy demands, says Stemmle. It can significantly reduce the use of fossil fuels compared to conventional types of heating and cooling, he adds, like gas boilers and compression chillers.

Currently, there are over 3,000 ATES systems in the Netherlands alone. Some are also found in Sweden, Denmark, and Belgium. They aren’t as widely used in the US yet, but adding ATES to the grid could reduce the consumption of petroleum products by up to 40 percent.

To increase ATES deployment, policymakers can support funding programs for ATES systems and related technologies, like heat pumps and heating grids, says Stemmle. He emphasizes the importance of decreasing market barriers as well, which can be achieved by establishing a simple and rapid permitting procedure and a uniform regulatory framework governing ATES operations. The deployment of such thermal energy storage systems could help achieve a more climate change-resilient grid in the future.

The post Could aquifers store renewable thermal energy? appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Baby cod seem to be drawn to the lullaby of wind turbines https://www.popsci.com/environment/baby-cod-offshore-wind-turbines/ Sat, 15 Apr 2023 23:00:00 +0000 https://www.popsci.com/?p=534107
Offshore wind power is a booming slice of the renewable energy mix. But like everything else, building machines in the ocean has some side effects.
Offshore wind power is a booming slice of the renewable energy mix. But like everything else, building machines in the ocean has some side effects. Photo by Ben Birchall/PA Images via Getty Images

Experiments show larval cod will orient themselves toward the simulated sound of a turbine.

The post Baby cod seem to be drawn to the lullaby of wind turbines appeared first on Popular Science.

]]>
Offshore wind power is a booming slice of the renewable energy mix. But like everything else, building machines in the ocean has some side effects.
Offshore wind power is a booming slice of the renewable energy mix. But like everything else, building machines in the ocean has some side effects. Photo by Ben Birchall/PA Images via Getty Images

This article was originally featured on Hakai Magazine, an online publication about science and society in coastal ecosystems. Read more stories like this at hakaimagazine.com.

Offshore wind is one of the fastest-growing sources of renewable energy, and with its expansion comes increasing scrutiny of its potential side effects. Alessandro Cresci, a biologist at the Institute of Marine Research in Norway, and his team have now shown that larval cod are attracted to one of the low-frequency sounds emitted by wind turbines, suggesting offshore wind installations could potentially alter the early life of microscopic fish that drift too close.

Cresci and his colleagues made their discovery through experiments conducted in the deep fjord water near the Austevoll Research Station in Norway. The team placed 89 cod larvae in floating transparent mesh chambers that allowed them to drift naturally, then filmed as they subjected half the fish in 15-minute trials to the output of an underwater sound projector set to 100 Hz to mimic the deep thrum put out by wind turbines.

When left to their own devices, all of the cod larvae oriented themselves to the northwest. Like the closely related haddock, cod have an innate sense of direction that guides their ocean swimming. When the scientists played the low-frequency sound, the baby fish still had a northwest preference, but it was weak. Instead, the larvae favored pointing their bodies in the direction of the sound. Cresci thinks the larvae may be attracted to the 100-Hz sound waves because that low frequency is among the symphony of sounds sometimes part of the background din along the coastline or near the bottom of the ocean where the fish might like to settle.

Fish photo

A time-lapse video shows larval cod orienting themselves toward the direction of a low-pitched 100-Hz sound meant to mimic one of the frequencies emitted by offshore wind turbines. Video courtesy of Alessandro Cresci

As sound waves propagate through water, they compress and decompress water molecules in their path. Fish can tell what direction a sound is coming from by detecting changes in the motion of water particles. “In water,” says Cresci, fish are “connected to the medium around them, so all the vibrations in the molecules of water are transferred to the body.”

Like other creatures on land and in the sea, fish use sound to communicate, avoid predators, find prey, and understand the world around them. Sound also helps many marine creatures find the best place to live. In previous research, scientists have shown that by playing the sounds of a thriving reef near a degraded reef they could cause more fish to settle in the area. For many species, where they settle as larvae is where they tend to be found as adults.

Even if larval fish are attracted to offshore wind farms en masse, what happens next is yet unknown.

Since fishers typically can’t safely operate near turbines, offshore wind farms could become pseudo protected areas where fish populations can grow large. But Ella Kim, a graduate student at the Scripps Institution of Oceanography at the University of California San Diego who studies fish acoustics and was not involved with the study, says it could go the other way.

Kim suggests that even if fish larvae do end up coalescing within offshore wind farms, the noise from the turbines and increased boat traffic to service the equipment could drown out fish communication. “Once these larvae get there,” Kim says, “will they have such impaired hearing that they won’t be able to even hear each other and reproduce?”

Aaron Rice, a bioacoustician at Cornell University in New York who was not involved with the study, says the research is useful because it shows that not only can fish larvae hear the sound, but that they’re responding to it by orienting toward it. Rice adds, however, that the underwater noise from real wind turbines is far more complex than the lone 100-Hz sound tested in the study. He says care should be taken in reading too much into the results.

As well as noise pollution, many marine species are also at risk from overfishing, rising ocean temperatures, and other pressures. When trying to decide whether offshore wind power is a net benefit or harm for marine life, says Rice, it’s important to keep these other elements in mind.

“The more understanding that we can have in terms of how offshore wind [power] impacts the ocean,” he says, “the better we can respond to the changing demands and minimize impacts.”

This article first appeared in Hakai Magazine and is republished here with permission.

The post Baby cod seem to be drawn to the lullaby of wind turbines appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The best solar panels of 2023 https://www.popsci.com/reviews/best-solar-panels/ Fri, 05 Nov 2021 00:00:00 +0000 https://www.popsci.com/?p=399538
A lineup of the best solar panels on a white background
Amanda Reed

Take advantage of the renewable energy offered by the sun with one or more solar panels to keep your devices charged.

The post The best solar panels of 2023 appeared first on Popular Science.

]]>
A lineup of the best solar panels on a white background
Amanda Reed

We may earn revenue from the products available on this page and participate in affiliate programs. Learn more ›

Best Overall The HQST Solar Panel 2pcs 100 Watt are the best solar panels HQST Solar Panel 2pcs 100 Watt 12V Monocrystalline
SEE IT

Get renewable energy for the campsite, RV, or even the home with these impressive monocrystalline solar panels.

Best for the Money The Nekteck 21W Solar Charger are the best solar panels. Nekteck 21W Solar Charge
SEE IT

Lightweight and affordable, these monocrystalline solar panels are ideal for backpacking or hiking.

Best for Camping The Goal Zero Boulder 200 Watt Briefcase are the best solar panels Goal Zero Boulder 200 Watt Briefcase
SEE IT

This foldable pair of solar panels is easy to pack into a vehicle and set up at a campsite using the built-in kickstand to get the best angle.

Hydro, wind, geothermal, and solar panels all represent the future of renewable energy. But why wait for everyone else to figure out the benefits when you can take the initiative to start relying on renewable energy today? Whether you are looking to completely power a home, generate power for an RV, or just charge your phone at the campsite, have the best solar panels are an excellent choice. 

The best solar panels are typically made with monocrystalline silicon wafers. Their high efficiency and power output make them ideal for powering a home. However, polycrystalline and thin film solar panels are also effective choices that are more affordable. To get a better understanding of the various products available, take a look at this list of top products, then keep reading for detailed information on solar panel types, size, weight, and device integration to help you find the best solar panels for long-lasting renewable energy.

How we chose the best solar panels

Having used solar panels to power camp stoves, mobile devices, and power stations for many camping trips, this first-hand experience helped to found the basis for the selection criteria, though extension research was also required in order to choose the best products from over 30 different panels. The top choices were selected based on the type of solar panel, the size and weight of each product, as well as the suitability of the solar panel for various uses, like powering solar generators, hiking, camping, or heading out in the RV.

Monocrystalline products represent the best options available simply because they outperform both polycrystalline and thin film solar panels in both efficiency and power output. The size and weight of a panel impacts the suitability of the product for specific uses. For instance, a 50-pound solar panel isn’t a good choice for hiking, but it works perfectly well for powering the home or even mounting on an RV. Lighter-weight products may blow off a home or RV. The efficiency and power output of each product impacted our decision-making, but the individual ranges were typical representations of each type. Monocrystalline products offer the best efficiency and power output. Polycrystalline panels are the second best, while thin film products rely more on affordability and portability to stand out.  

The best solar panels: Reviews & Recommendations

Whether you’re using a solar panel to power a solar generator for an outdoor party or preparing to go off the grid, we have plenty of choices to fit your lifestyle, budget, and use. Look on the bright side of life by checking out our recommendations below.

Best overall: HQST Solar Panel 2pcs 100 Watt 12V Monocrystalline

Why it made the cut: These monocrystalline panels have corrosion-resistant aluminum frames to ensure the solar panels can be used outdoors for an extended period of time.

Specs

  • Type: Monocrystalline
  • Output: 100 Watts
  • Weight: 12.1 pounds

Pros

  • High efficiency rating of 21 percent
  • Suitable for houses, boats, caravans, RVs, or camping
  • Durable, corrosion-resistant aluminum frame

Cons

  • Must connect to compatible power station to charge mobile devices

The HQST 2-Piece Solar Panel Set comes with two 100-watt panels that each measure 40.1 inches tall by 20 inches wide. They’re just 1.2 inches thick. These best-quality solar panels have predrilled holes in the back of their frames that make it much easier to mount the panels to Z-brackets, pole mounts, or tilt mounts. 

Each panel weighs 12.1 pounds and they can either be used separately or collectively to generate electricity. However, it should be noted that these solar panels are made for charging power stations, backup batteries, and any vehicles that operate with a 12V battery. This means that they are not equipped with outlets for USB, USB-C, or any other adapters for mobile devices. 

The panels are supported by a durable aluminum frame that is specifically designed to resist corrosion, withstand snow loads of up to 112.8 pounds per square foot (PSF), and weather any winds of up to 140 miles per hour. With a high-efficiency rating of 21 percent and the versatility to be used for a house, boat, caravan, RV, or even camping, these panels are an excellent option for safe, renewable energy.

Best for the money: Nekteck 21W Solar Charger

Why it made the cut: Pack this lightweight product into a backpack to take to the campsite and take advantage of the two built-in USB ports for mobile device charging.

Specs

  • Type: Monocrystalline
  • Output: 21 Watts
  • Weight: 1.1 pounds

Pros

  • High efficiency rating of 21 to 24 percent
  • Foldable and compact for easy storage
  • Best suited for hiking, backpacking, and camping

Cons

  • Can easily blow away in moderate wind if not secured

These best solar panels for the money are lightweight and essential for camping, backpacking, and hiking trips that require the user to carry everything they need in a backpack. The Nekteck 21W Solar Charger weighs just 1.1 pounds and can fold up to just a quarter of the original size, saving space in the user’s backpack. When this product is unfoldable it reveals three monocrystalline solar panels that each have an efficiency rating of about 21 to 24 percent, ensuring that a high level of energy is captured from the sun and transferred to the USB outputs.

Plug in up to two USB devices at once to draw power directly from the 21-watt panels. It’s flexible, so it’s easy to arrange in such a way that it gets a good look at the sun. Simply adjust the angle and position of the solar panels according to the current position of the sun. Just keep in mind that this product only weighs 1.1 pounds, so even moderate winds can carry the panels away if they are not secured.

Best for camping: Goal Zero Boulder 200 Watt Briefcase

Why it made the cut: Pack the briefcase-style monocrystalline panels into the truck or car and use the built-in kickstand for optimal positioning.

Specs

  • Type: Monocrystalline
  • Output: 200 Watts
  • Weight: 46.2 pounds

Pros

  • High efficiency rating of 21 percent
  • Built-in kickstand
  • Folds to just half the original size
  • Comes with a carrying case and handle

Cons

  • Too heavy to carry on hikes or backpacking trips 

The goal of camping is to get out into the wilderness and enjoy the outdoors, but it doesn’t have to mean totally abandoning technology. In fact, it’s advised to at least have an emergency radio available at all times to stay up to date on current and future weather conditions, as well as call for help in emergencies. The Goal Zero Boulder 200-Watt Solar Panels is an excellent option to ensure that the campsite has power for the emergency radio, mobile device, electric camp stoves, and any other items that users take with them camping. 

Each solar panel has a power output of 100 Watts, but both panels are attached and cannot be used independently, so these monocrystalline panels have a combined output of 200 Watts and an efficiency rating of 21 percent. The panels come with a carrying case, a built-in handle, and a kickstand to make transporting and setting up the panels easier. Even with those portability features, the 46.2-pound weight makes this the best solar panels for camping but a poor option for hiking or backpacking. 

Best portable: Jackery SolarSaga 60W Solar Panel

Why it made the cut: A built-in kickstand and handle make this foldable 60-Watt solar panel easy to carry and set up.

Specs

  • Type: Monocrystalline
  • Output: 60 Watts
  • Weight: 6.6 pounds 

Pros

  • High efficiency rating of 23 percent
  • Built-in kickstand and handle
  • Lightweight and compact

Cons

  • Vulnerable to high winds
  • Low power output

Despite its small size, the Jackery Solar Saga Solar Panel has a high-efficiency rating of 23 percent due to the premium monocrystalline construction. However, while the size doesn’t impact the efficiency of the silicon wafers, it does reduce the overall power output to just 60 Watts. That stream is still more than enough to charge up to two devices at once through the USB-C and USB-A ports. Additionally, the panels can connect to an available power station to simply store the collected energy until the sun goes down and the camp lights come out. 

These best portable solar panels can fold in half and it has built-in handles to make it easier to carry. It weighs just 6.6 pounds, which is ideal for hiking, backpacking, and camping, though the slight weight does leave the panels vulnerable to high winds. The built-in kickstand helps to support the panels, but it’s advised to secure them to be certain that they do not get blown away.

Best for RVs: Renogy 200 Watt Monocrystalline

Why it made the cut: Set up these monocrystalline panels to get an output of up to 200 Watts at an efficiency rating of 21 percent.

Specs

  • Type: Monocrystalline
  • Output: 200 Watts
  • Weight: 35.9 pounds

Pros

  • High efficiency rating of 21 percent
  • Comes with a solar charge controller
  • Adjustable, corrosion-resistant aluminum stand
  • Built-in handles

Cons

  • Too heavy for hiking or backpacking

Operate the accessories and charging ports on an RV or a boat with these impressive Renogy 200-Watt Panels. These best solar panels for RVs come equipped with a solar charger controller to convert the solar power to usable electricity for both 12V and 24V batteries. The controller has a clear LCD display so that the user can review the operating information, switch between Amp and Volts on the display, and use the controller to set the battery type. 

Mount the panels to the RV or simply use the built-in stand to set these panels up in the optimal position to absorb energy from the sun. This product is made with monocrystalline silicon wafers with an efficiency rating of 21 percent and a combined power output of 200 Watts, though it should be mentioned that each solar panel has an individual output of just 100 Watts. These panels weigh 35.9 pounds, so they are not the best for hiking or backpacking, but the heavy weight and adjustable, corrosion-resistant aluminum stand ensure that the panels can hold up in poor weather.

Things to consider when buying the best solar panels

Solar panels are an investment that should be carefully considered in order to ensure that you get the best option for your situation. There are significant differences between the capabilities of the various solar panel types, but the size, weight, portability, and device integration can also help to determine which products are the best solar panels for camping, backpacking, or installing on the roof of your home. Take some time to learn about these important factors before making a decision. 

Solar panel types

The type of solar tech you choose for your panels can have a profound effect on the appearance, cost, efficiency, and power absorption. The three main types can be differentiated by the material that is used to make the solar cells, including monocrystalline, polycrystalline, and thin film.

  • Monocrystalline solar panels are made with silicon wafers that are cut from a single silicon crystal. This construction method and material results in higher efficiency and power output than either polycrystalline or thin film panels. Monocrystalline products tend to have an efficiency that exceeds 20 percent, while the power output can range from 100 Watts (W) to over 400 Watts. However, these products usually cost more than both polycrystalline and thin film solar panels.
  • Polycrystalline solar panels can immediately be differentiated from monocrystalline due to the blue solar cells instead of black cells. The color differences, as well as the lower efficiency and power output, can be linked to the way in which polycrystalline solar panels are made. Instead of using a single silicon crystal to create the silicon wafers, a polycrystalline solar panel is made up of silicon crystal fragments that have been melted together through a superheating process. This type of panel typically has an efficiency rating between 15 to 17 percent and will usually have a maximum output of 200 Watts.
  • Thin film solar panels are the most affordable option available. They are made with several different materials including cadmium telluride (CdTe), amorphous silicon (a-Si), and copper indium gallium selenide (CIGS). These products also typically incorporate conducting layers made of glass, ethylene tetrafluoroethylene (ETFE), aluminum, or steel. While this type of panel only has an efficiency rating of about 11 percent and a maximum power output of 100 Watts, they are usually lightweight and may even be flexible, making thin film panels great for camping, hiking, and backpacking.

Size & weight 

The specific size and weight of a solar panel is a key consideration when you are trying to determine the suitability of a product. For instance, compact lightweight solar panels are excellent for hiking, backpacking, and camping because they can fit into a backpack and don’t cause excessive fatigue. However, these panels are vulnerable to the wind because of their broad, flat shape and low weight, meaning that they can be carried away easily.

Alternatively, broad heavy panels are great for mounting on the roof of the house or an RV, but they are much too bulky to pack into a vehicle or set up at a campsite. So, it’s important to figure out how you want to use the solar panel before deciding on a specific product. 

Device & battery integration

The purpose of solar panels is to absorb the solar power from the sun and convert it to usable electricity for a range of different devices and batteries. However, each product will have different devices that they can connect to, like USB-charging mobile devices, 12V batteries, or power stations. Before investing in solar panels, make sure that the specific product can be used as intended. 

If you are looking for a way to charge your mobile devices, then it’s necessary to find solar panels that have USB outlets, but if the goal is to charge a boat battery, then solar panels that connect to 12V batteries would be best. If you aren’t quite sure what you want to use the panels to charge then it’s advised to invest in a power station that can collect, store, and convert the energy from the panels into usable electricity for a variety of different purposes.

FAQs

Q. What are the three types of solar panels?

The three main types of solar panels are differentiated by the material used to make the solar cells. These types include monocrystalline, polycrystalline, and thin film. Monocrystalline is the most expensive option, but these panels also have the best efficiency and power output to a battery or device. Thin film panels are the most affordable, though they tend to have lower efficiency and power output than both monocrystalline and polycrystalline. Polycrystalline solar panels fall midway between monocrystalline and thin film when it comes to price, efficiency, and power output.

Q. Can a house run on solar power alone?

Yes, a home can be run exclusively on solar power with the right number of panels, ideal positioning, and an adequate energy storage system to ensure that you have access to power when the sun goes down.

Q. How many solar panels are needed to run a house?

The average American home requires between 20 to 60 panels with a power output between 100 to 300 watts in order to completely replace the current electric usage. Using a smaller number of panels with a higher power output is a good way for smaller homes to operate on solar power without worrying about trying to fit 60 full-size panels on the roof.

Final thoughts on the best solar panels

The highly efficient HQST Solar Panels are suitable for mounting to the RV, setting up at the campsite, or even mounting to the home to help save money on electric bills. However, if you are looking for a smaller solar panel for backpacking or hiking, then the affordable Nekteck 28W Solar Charger is the right way to go.

Why trust us

Popular Science started writing about technology more than 150 years ago. There was no such thing as “gadget writing” when we published our first issue in 1872, but if there was, our mission to demystify the world of innovation for everyday readers means we would have been all over it. Here in the present, PopSci is fully committed to helping readers navigate the increasingly intimidating array of devices on the market right now.

Our writers and editors have combined decades of experience covering and reviewing consumer electronics. We each have our own obsessive specialties—from high-end audio to video games to cameras and beyond—but when we’re reviewing devices outside of our immediate wheelhouses, we do our best to seek out trustworthy voices and opinions to help guide people to the very best recommendations. We know we don’t know everything, but we’re excited to live through the analysis paralysis that internet shopping can spur so readers don’t have to.

The post The best solar panels of 2023 appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
This common bacteria is teaching scientists how to turn air into energy https://www.popsci.com/technology/air-electricity-bacteria-enzyme/ Mon, 13 Mar 2023 18:00:00 +0000 https://www.popsci.com/?p=519161
Atomic structure image of Mycobacterium smegmatis Huc enzyme
Knowing the atomic structure of M. smegmatis' Huc enzyme could help usher in a new source of clean energy. Monash University

A safe cousin of tuberculosis can turn hydrogen into its own fuel. Scientists have finally figured out how it works.

The post This common bacteria is teaching scientists how to turn air into energy appeared first on Popular Science.

]]>
Atomic structure image of Mycobacterium smegmatis Huc enzyme
Knowing the atomic structure of M. smegmatis' Huc enzyme could help usher in a new source of clean energy. Monash University

A bacterial relative of tuberculosis known as Mycobacterium smegmatis can pull off an incredibly impressive trick. When fuel is in short supply, it can absorb trace amounts of hydrogen in the atmosphere and water around it to convert into energy. Simply put, it turns air into electricity.

Unlike its infamous cousin, M. smegmatis is both nonpathogenic and commonly found in soil literally all over the world—from volcanic craters, to Antarctic climes, to the deepest ocean depths. This ubiquity and resilience is owed in part due to its ability to absorb miniscule levels of hydrogen for nutrition. Although researchers have been aware of the mechanism for some, they didn’t know how it worked. But as a new paper published in Nature reveals, the puzzle has finally been solved—and it could usher in a new era of revolutionary, clean energy.

Researchers at Australia’s Monash University Biomedicine Discovery Institute have discovered and isolated the M. smegmatis’ unique enzyme, dubbed “Huc,” enabling it to convert hydrogen into electricity. “Huc is extraordinarily efficient,” explains research co-lead and professor of microbiology, Chris Greening, in a statement last week. “Unlike all other known enzymes and chemical catalysts, it even consumes hydrogen below atmospheric levels—as little as 0.00005 percent of the air we breathe.”

[Related: Scientists think this tiny greenhouse could be a game changer for agrivoltaics.]

To isolate and identify the previously unknown enzyme, researchers utilized cryo-electron microscopy, which fired electrons at frozen Huc samples to map its atomic structure and electrical pathways. Another approach known as electrochemistry allowed researchers to demonstrate the purified enzyme could create electricity with only tiny concentrations of hydrogen. From there, researchers explained that by immobilizing Huc on an electrode, its electrons can subsequently transfer into an electrical circuit to generate current.

Although in its relative infancy, researchers hope the newly isolated Huc enzyme could one day be grown at scale, seeing as how M. smegmatis can be easily grown in large quantities within lab settings. What’s more, Huc isn’t alone in this ability. According to Monash researchers, between 60 and 80 percent of soil bacteria feature similar enzymes that collectively absorb 70 million metric tons of hydrogen per year. Further studies of these enzymes could provide insights into how to help stabilize atmospheric conditions in the face of climate change.

Before this, however, a natural Huc battery could be utilized akin to solar cells to eventually help power smartwatches, computers, or even one day cars. “Once we produce Huc in sufficient quantities, the sky is quite literally the limit for using it to produce clean energy,” said research co-lead Rhys Grinter, a research fellow at the Monash Biomedicine Discovery Institute and study co-lead, last week.

The post This common bacteria is teaching scientists how to turn air into energy appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
This floating wind turbine just generated its first kilowatt hour of power https://www.popsci.com/technology/floating-wind-turbine-prototype/ Wed, 08 Mar 2023 19:00:00 +0000 https://www.popsci.com/?p=518163
X1 Wind's X30 floating wind turbine prototype off the Canary Islands coast
The 1:3 scale prototype just generated its first kWh of power off the Canary Island coast. X1 Wind

X1 Wind's X30 prototype utilizes a tension leg platform to reduce its impact on the sea floor.

The post This floating wind turbine just generated its first kilowatt hour of power appeared first on Popular Science.

]]>
X1 Wind's X30 floating wind turbine prototype off the Canary Islands coast
The 1:3 scale prototype just generated its first kWh of power off the Canary Island coast. X1 Wind

A floating wind turbine prototype has generated its first 1kWh of power off the coast of Spain’s Canary Islands, marking a major milestone in its makers’ goals to begin manufacturing their novel design at scale. Not to mention, it’s one of the first deployed floating turbines with a tension leg platform (TLP), an innovation that drastically reduces damage to sea floors.

Created by Spain-based X1 Wind, the startup company’s X30 floating prototype is the result of years of planning and fine-tuning, as well as includes several unique components and adaptations. At one-third the size of the final proposed turbine, X30 utilizes PivotBuoy, an augmented single point mooring (SPM) setup that allows the floating platform to passively align with wind currents, much like a classic weathervane. This eliminates the requirement of an active yaw actuator and ballast systems, thus minimizing the turbine’s overall weight and maintenance needs.

[Related: A wind turbine just smashed a global energy record—and it’s recyclable.]

X30’s tension leg platform addition provides boosted environmental benefits. In this setup, a TLP is kept stable and at rest using steel rods anchored to the sea floor with either suction anchors or caissons. The legs remain stretched via the turbine’s platform tension beneath the water line, and its braces will limit the turbine’s vertical movement atop the waves.

From there, a 1.4km underwater cable feeds the X30 prototype’s energy generation into the Oceanic Platform of the Canary Islands’ (PLOCAN) existing offshore test site smartgrid.

Ocean photo

X1 Wind’s floating turbine design was first envisioned in 2012 by company cofounder Carlos Casanovas while a student at MIT. Since then, Casanova’s team has worked to bring the concept into the real world. The project first began its design phase in April 2019, before moving onto its manufacturing stage throughout the onset of the COVID-19 pandemic. Final assembly and construction finished in October 2022 in 50m deep waters off of the Canary Islands.

Once thought a pipe dream, offshore floating wind turbines are increasingly showing themselves to be an extremely promising asset in sustainable global energy generation. Speaking in 2022, Axelle Viré, an associate professor of Floating Offshore Wind at Delft University of Technology, estimated that floating wind turbines could be expected to generate between 150-200 gigawatts of energy in the coming decades. Currently, fixed wind turbines only generate 12 gigawatts. 

[Related: Scientists think we can get 90 percent clean energy by 2035.]

“Floating wind is set to play a vital role supporting the future energy transition, global decarbonisation and ambitious net-zero targets,” Casanovas stated in a statement on Tuesday. “Today’s announcement marks another significant stride forward for X1 Wind accelerating towards certification and commercial scale ambitions to deliver 15MW platforms and beyond in deepwater sites around the globe.”

X1 Wind hopes to move into full-scale production after its prototype testing is completed, with their floating wind turbines each generating 15mW of clean energy anchored in deep sea environments around the world.

The post This floating wind turbine just generated its first kilowatt hour of power appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
This plane powered by hydrogen has made an electrifying first flight https://www.popsci.com/technology/hydrogen-fuel-cell-aircraft-explained/ Tue, 07 Mar 2023 20:00:00 +0000 https://www.popsci.com/?p=517908
hydrogen powered airplane
The engine on the right side of the plane was actually an electric motor running off of hydrogen fuel cells. Universal Hydrogen

The aircraft flew on March 2 for about 15 minutes. Here's how its propulsion system works.

The post This plane powered by hydrogen has made an electrifying first flight appeared first on Popular Science.

]]>
hydrogen powered airplane
The engine on the right side of the plane was actually an electric motor running off of hydrogen fuel cells. Universal Hydrogen

Last week in Washington state, an airplane that appeared perfectly normal from the outside made a brief flight. On the left side of the plane was a standard engine, burning jet fuel. But on the right side was something radically different: an electric motor that got its power not from batteries, but from hydrogen stored inside the aircraft. 

While burning jet fuel creates carbon emissions and particulate matter pollution, in this case the hydrogen system produces water vapor and heat. It’s just one way that aircraft makers are trying to make flying less bad for the planet: companies are working on planes that run off batteries, they are creating synthetic aviation fuel, and in this case, they are leveraging hydrogen fuel cells. 

“This is certainly the biggest aircraft to have ever flown on hydrogen fuel cells,” boasts Mark Cousin, the chief technical officer of Universal Hydrogen, the company behind the experimental aircraft. 

Here’s how the system works: While the left side of the plane stored its jet fuel in the wing like a typical aircraft, the hydrogen for the electric motor on the right wing was stored in tanks, in a gaseous form, in the back of the plane. “You simply can’t fit hydrogen in the wing of an airplane,” Cousin says. “It was taking up probably about a third of the fuselage length.” 

[Related: Watch this sleek electric plane ace its high-speed ground test]

The hydrogen travels up to the right wing, which is where the magic happens. There, in the nacelle hanging off the wing where the motor is, the hydrogen combines with compressed air (the air enters the equation thanks to the two inlets you can see near the motor on the right wing) in stacks of fuel cells. The system uses six stacks of fuel cells, each of which is made up of hundreds of individual fuel cells. Those fuel cell stacks create the electricity that the motor needs to run. “A fuel cell is a passive device—it has no moving parts,” Cousin says. The juice it creates comes in DC form, so it needs to go through inverters to become the AC power the motor requires. 

When the plane flew last week, it was a type of hybrid: a regular engine burning jet fuel in the wing on the left side, and the electric motor on the right running off that hydrogen and air. “Once we hit cruise, we throttled back and we flew almost exclusively on the right-hand engine,” the pilot said, according to The Seattle Times. “It was silent.”

Usually holding around 50 people, the aircraft, a modified Dash 8-300, in this case had just three aboard for the test flight, which had a duration of some 15 minutes. It flew at an altitude of about 2,300 feet above the ground. “The aircraft did a couple loops around the airfield,” Cousin says. Then eventually it made a “very, very smooth landing.” 

While the aircraft stored its hydrogen in gaseous form in the tanks in the back, the company has plans to switch to a method that stores the hydrogen as a liquid, which occupies less space than the gaseous assembly and doesn’t weigh as much. Those tanks must be kept at very cold temperatures, and the liquid needs to be converted to a gas before it can be used in the fuel cells. While this type of liquid hydrogen setup still takes up more space than regular jet fuel does, it’s a better solution than storing hydrogen in gaseous form, he says. Their plan is to switch the same plane that just flew over to a liquid hydrogen system this year. 

In terms of trying to decarbonize the aviation industry—after all, it’s a sizable producer of carbon dioxide emissions—Cousin argues that hydrogen is the best approach. “We think that hydrogen fuel is really the only viable solution for short- and medium-range airplanes,” he says. It’s certainly not the only approach, though. In September of last year, a battery powered plane called Alice also made a first flight in Washington state, and other companies, like Joby Aviation and Beta Technologies, are working on small aircraft that are also battery electric. 

Universal Hydrogen isn’t alone in pursuing hydrogen as a means of propelling aircraft. In February of last year, Airbus said that it would use a special, giant A380 aircraft to test out hydrogen technology, and in November, unveiled plans for an electric engine that also runs off hydrogen fuel cells.

Watch a short video about the recent flight, below.

The post This plane powered by hydrogen has made an electrifying first flight appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Scientists think this tiny greenhouse could be a game changer for agrivoltaics https://www.popsci.com/technology/solar-panel-greenhouse-roof/ Mon, 06 Mar 2023 18:30:00 +0000 https://www.popsci.com/?p=517365
Miniature greenhouse with semitransparent solar cell roof growing crop
A new layer of organic material boosted the solar cells' lifespans. Yang Yang Laboratory/UCLA

In new experiment, scientists used semitransparent, semi-organic solar cells.

The post Scientists think this tiny greenhouse could be a game changer for agrivoltaics appeared first on Popular Science.

]]>
Miniature greenhouse with semitransparent solar cell roof growing crop
A new layer of organic material boosted the solar cells' lifespans. Yang Yang Laboratory/UCLA

The field of agrivoltaics, in which land is used for both farming and solar power generation, has some basic logistical issues. Namely, it has been difficult to build structures that can both efficiently generate solar power while not blocking the sunlight needed for crops to actually grow. A team of researchers at UCLA recently discovered a novel solution to the issue that relies on organic materials. The process even outperforms conventional glass-roof greenhouses installed with traditional solar panel arrays.

[Related: Why your community’s next solar panel project should be above a parking lot.]

The team detailed their findings on Monday in Nature Sustainability, describing how integrating a layer of a naturally occurring chemical known as L-gluthathion can extend semi-transparent solar cells’ lifespans while also improving their efficiency. Yang Yang, a materials scientist at UCLA’s Samueli School of Engineering, explained that organic materials could be a major tool within agrivoltaics, because they selectivity absorb certain spectrums of light. Historically, however, they have been too unstable to widely deploy in the solar energy industry.

Inorganic solar cells’ organic counterparts often degrade extremely quickly as sunlight causes them to lose electrons through oxidation. By adding a thin layer of carbon-based L-gluthathion, the previously short-lived cells could maintain upwards of 80 percent efficacy after 1,000 usage hours—a major step up from the less than 20 percent efficacy over the same time period sans L-gluthathion.

[Related: Solar energy company wants to bolt panels directly into the ground.]

To test the new solar cells, Yang’s team compared the yields of two dollhouse-sized greenhouses growing broccoli, mung beans, and wheat. The transparent glass roof of one greenhouse was fitted with a number of traditional inorganic solar panels, while the other’s ceiling was entirely composed of the semitransparent organic panel arrays. To researchers’ surprise, the semitransparent greenhouse actually resulted in higher crop yields than its traditional counterpart. The team believes this could be thanks to the L-gluthathion layer blocking both ultraviolet and infrared rays—UV light often can damage plants, while infrared can heat greenhouses too much and cause crops to require more water.

Yang’s team hopes to eventually scale production of the new organic solar cells for widespread industrial usages. 

New, efficient, partially organic designs, along with proposed projects like more parking lot canopies and cheaper home applications, could help insure solar power as one of nations’ key tools in transitioning to green, sustainable energy grids.

The post Scientists think this tiny greenhouse could be a game changer for agrivoltaics appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The rise of green hydrogen in Latin America https://www.popsci.com/environment/green-hydrogen-latin-america/ Wed, 22 Feb 2023 02:00:00 +0000 https://www.popsci.com/?p=513904
Electric Vehicles photo
Knowable Magazine

In anticipation of future demand, several projects are underway in the region to produce this clean energy source.

The post The rise of green hydrogen in Latin America appeared first on Popular Science.

]]>
Electric Vehicles photo
Knowable Magazine

This article was originally featured in Knowable.

Franklin Chang-Díaz gets into his car, turns on the radio and hears the news about another increase in the price of gasoline. But he sets off knowing that his trip won’t be any more expensive: His tank is filled with hydrogen. His car takes that element and combines it with oxygen in a fuel cell that works like a small power plant, creating energy — which goes into a battery to power the car — and water vapor. Not only will Chang-Díaz’s trip cost no more than it did yesterday, it will also pollute far less than a traditional gasoline-powered car would.

Chang-Díaz would like to have a public hydrogen station nearby whenever he needs to fill his tank, but that isn’t possible yet, either in his native Costa Rica or in any other Latin American country. He ends up instead at the hydrogen station he built himself, as part of a project aimed at demonstrating that hydrogen generated with renewable energy sources — green hydrogen — is the present, not the future.

A physicist, former NASA astronaut and the CEO of Ad Astra Rocket Company, Chang-Díaz has a clear vision. Green hydrogen, he believes, is a fundamental player in lowering emissions from transportation and converting regions that import fossil fuels — such as his small Central American country — into exporters of clean energy, key to avoiding the catastrophic effects of global warming.

According to data from the Inter-American Development Bank, the most polluting sectors in Latin America to which clean hydrogen technology could be applied are transportation (which generates 40 percent of the region’s CO2 emissions) and electricity and energy (36 percent of emissions). And Chang-Díaz is not alone in his belief in the promise. Large-scale hydrogen transportation will be part of the future, says Nilay Shah, a chemical engineer at Imperial College London. “By 2050, hydrogen could deliver 18 percent of the global energy supply … 28 percent of which would be destined for the transport sector,” he and his colleagues note in an article on the application of hydrogen in mobility technologies in the 2022 Annual Review of Chemical and Biomolecular Engineering.

But for green hydrogen to become an important player in the world’s energy resources, the technologies for obtaining it will need to be developed on a large scale. Latin America wants to be part of this future and is already preparing, with projects throughout the region.

Electric Vehicles photo

CREDIT: COURTESY OF AD ASTRA ROCKET COMPANY

Not all hydrogen is the same

Hydrogen is the lightest chemical element: Its nucleus has only one proton, orbited by an electron. It’s also the most common: Up to 90 percent of the atoms in the universe are believed to be hydrogen atoms. In its gaseous state (H 2), it is tasteless, colorless and odorless. In the terrestrial environment, it is usually found in more complex compounds, such as two hydrogen atoms bonded to one oxygen atom to form a water molecule (H 2O), or four hydrogen atoms bonded to one carbon atom to form methane (CH 4). If we need the hydrogen atoms alone, we must uncouple them from these compounds.

The use of hydrogen as an energy source is not new. For decades, NASA mixed H2 gas with oxygen to generate the energy needed to lift hundreds of tons and send its shuttles into space. The US Department of Energy lists it as a safer fuel than fossil fuels because it is non-toxic and dissipates quickly in the event of a leak, since it is lighter than air.

At present, hydrogen as an energy source is mainly used in the production of petroleum derivatives, steel, ammonia and methanol. According to data from the International Energy Agency (IEA), in 2020 the world’s population consumed about 90 million tons of hydrogen — equivalent to only 2.5 percent of global energy consumption. Latin America uses only 5 percent of this hydrogen, mainly in countries such as Trinidad and Tobago, Mexico, Brazil, Argentina, Venezuela, Colombia and Chile. It is mostly dirty hydrogen, which pollutes the planet due to the processes used to obtain it.

Electric Vehicles photo
Green hydrogen is produced using energy from renewable sources — such as hydroelectric, solar or wind power. Through a process known as electrolysis, this clean electricity separates water into its two constituent elements: oxygen and hydrogen. The hydrogen is then stored and transported. It can be used directly in industrial processes; be combined with other elements to create synthetic fuels; or be mixed with oxygen to generate electricity again, as is the case with hydrogen fuel-cell cars.

Depending on how it is derived, hydrogen can be classified as gray, blue, green — or even black. Gray hydrogen is generated using fossil fuels — natural gas especially, in the case of Latin America. In a process called steam reforming, carbon monoxide (CO) and water vapor (H2O) are subjected to high temperatures, moderate pressure and a catalyst, producing carbon dioxide (CO 2) and hydrogen (H 2). If coal is used instead of gas to generate the heat necessary for steam reforming, the hydrogen is then considered black — the worst of all, from an environmental point of view.

Blue hydrogen uses gas or coal in the same steam reforming process, but in this case 80 percent to 90 percent of the carbon emissions end up underground through a process called industrial carbon capture and storage (CSS). Finally, green hydrogen — also called clean hydrogen — uses electrical energy generated by renewable sources, such as solar and wind power, to separate the water molecule into its two elements, hydrogen and oxygen, by means of an anode and a cathode in a process called electrolysis.

Currently, less than 0.4 percent of the hydrogen utilized in Latin America is green; the rest is linked to fossil fuels. In fact, in 2019, hydrogen production for the region required more natural gas than all of the gas consumed in Chile, a country with 19 million inhabitants. And it generated more polluting emissions than those produced in a year by all the cars in Colombia, a nation with some 7 million vehicles.

Globally, 4 percent of hydrogen production is already the result of electrolysis, but the remaining 96 percent still requires gas, coal or petroleum derivatives.

Toward green hydrogen

With the goal of producing more and more green hydrogen, several projects on different scales are taking shape in Latin America.

  • The Brazilian company Unigel plans to inaugurate a $120 million plant in 2023, which will produce 10,000 tons per year of green hydrogen — the equivalent of 60 megawatts (MW) — in its first stage.
  • Sener Ingeniería Mexico announced in August 2022 the creation of the first of a series of small plants, of about 2.5 MW.
  • Chile, for its part, is already seeing some of the fruits of its National Green Hydrogen Strategy, launched in 2020. This South American country says it plans to “conquer global markets” in 2030, mainly Europe and China, where it aims to send 72 percent of its production. The port of entry to Germany will be Hamburg. “With its great potential for green hydrogen production, Chile is on the verge of becoming an exporter of global magnitude,” said the mayor of Hamburg, Peter Tschenscher, during the signing of a cooperation agreement in September 2022.
  • Uruguay launched the Green Hydrogen Sector Fund, with $10 million non-reimbursable funding from the government to finance projects. In August 2022, nine companies won a spot, some with names such as “Green H 2 Production for Forest Transport” and “Palos Blancos Project: green hydrogen, ammonia and fertilizer production plant with wind and solar photovoltaic renewable energy.”
  • And in Costa Rica, Chang-Díaz is helping lead the way to add green hydrogen to the country’s portfolio of clean energy sources (about 99 percent of electricity in Costa Rica is generated through sources such as the sun, wind and water from dams). In July 2022, Chang-Díaz demonstrated on social media how he fueled his car, at a prototype station, with green hydrogen produced in his own country.

While some Latin American countries may benefit from the production of green hydrogen, others will benefit from large-scale consumption of the clean energy source. For example, Trinidad and Tobago, which consumes 40 percent of the region’s hydrogen for its oil refining processes, emits 12.3 metric tons of carbon per person per year (by comparison, Costa Rica emits 1.6 metric tons per capita per year, according to 2019 World Bank data). If Trinidad and Tobago used green hydrogen in its processes instead of gray hydrogen, its carbon footprint would be significantly reduced.

Electric Vehicles photo
Although hydrogen can be produced with renewable energy throughout Latin America, in certain countries  — such as Mexico, Chile, Argentina, Peru, Bolivia and Brazil — the availability of solar, wind or hydroelectric power will make the process more cost-effective.

Other countries are being creative and are not yet focusing on either production or consumption of green hydrogen. Panama, for example, seeks to become a storage and commercialization node for the element, like the air and maritime transport hub it already is. As part of this national energy transformation plan, called Green Hydrogen Roadmap, the authorities of this country signed a memorandum of understanding with Siemens Energy. Panama also has plans to produce some of its own green hydrogen eventually: The Ciudad Dorada Biorefinery, expected to begin construction this year, will have the capacity to generate 405,000 metric tons.

“Green hydrogen technology is developing worldwide and by 2030 Latin America will be the third region in the world with the most projects, after Europe and Australia,” says José Miguel Bermúdez, chemical engineer and energy technology analyst at the IEA.

For Shah, the reason for this growing interest is clear: Many Latin American countries have the potential to generate more clean energy than they need. “Let’s take Chile, for example,” he says. “The amount of potential for renewable electricity is probably 10 times more than the amount of electricity you need in the country.” Exporting that clean energy from Chile or Costa Rica in the form of electricity over long distances is complicated and expensive. But using it to create hydrogen and transport it in tanks to practically any place in the world is realistic, he says, although it will require investments — just as investments in oil tankers and gas pipelines were once needed.

But, Shah adds, green hydrogen could also be transported with existing infrastructure if it is used to create popular products, such as ammonia (NH3, a nitrogen atom bonded to three hydrogen atoms, a compound widely used in agriculture) or synthetic fuels.

Challenges to be solved

After the production and distribution of green hydrogen comes its myriad uses. To power car batteries, it’s combined with oxygen in a fuel cell and generates water vapor and energy. To manufacture iron, hydrogen is used to transform one molecule of iron oxide (Fe2O 3) into two molecules of iron (Fe) and three molecules of water (H 2O) at high temperatures — fossil fuels are currently used for this purpose. Processing this iron further, with more energy, produces steel.

The manufacture of cement also requires high temperatures, currently generated with fossil fuels: The IEA indicates that as much as 67 percent of hydrogen demand in 2030 could come from this industry. In addition, hydrogen combined with carbon in the Fischer-Tropsch process generates synthetic fuels, which are cleaner than traditional fossil fuels. Aircraft are already allowed to fly on up to 50 percent synthetic kerosene.

Some 50,000 hydrogen vehicles are already on the road worldwide, Bermúdez adds. Projections are that the number will soon skyrocket — China alone expects to have 1 million on its streets by 2035 — but experts agree that, in the short or medium term, hydrogen will not completely replace the most polluting fuels; instead, it will be one alternative in a matrix of different options, such as traditional electric cars or solar-powered airplanes. However, the experts also agree that it will be a significant option, not a marginal one.

“There will be a series of technologies and areas of opportunity that do not have to be specifically the same in all the countries of our region,” says Andrés González Garay, a process engineer at the chemical company BASF and a coauthor of the article on hydrogen production and its applications to mobility in the Annual Review of Chemical and Biomolecular Engineering. “It is also true that hydrogen, although it can be applied in a lot of areas, will not make sense in all of them, and it will depend a lot on our political, social and economic systems.”

Electric Vehicles photo
The International Energy Agency expects Latin America to become one of the world’s most important clean hydrogen export zones by 2030. Chile is one of the countries with the greatest potential and already has some exports of this product.

To arrive at the more environmentally friendly scenario that green hydrogen offers, its production should be increased as soon as possible and, at the same time, its consumption needs to be encouraged, Shah says. “Global hydrogen production is expected to grow six to 10 times between now and 2050,” González Garay says, and the increase is projected to be mainly in clean hydrogen.

The role of governments will be pivotal, the scientists say. “If governments become the first users of hydrogen — for their buildings, for their vehicle fleets, for their other operations, for power generation — they become the customer. Then they can create the supply chain of hydrogen and give confidence to the producers that there is a market,” Shah says.

Adds Bermúdez: “The public sector needs to put the regulations and support programs in place to accelerate the private sector. Public policies are needed to force demand for green hydrogen…. If Latin America does not position itself well and start producing and closing agreements, it runs the risk of being left behind.”

Chang-Díaz, for his part, fears that countries like Costa Rica, despite producing almost all its electricity through clean renewable sources, risk moving too late to take advantage of the wave of green hydrogen that is already beginning to rise. In December 2022 he participated as a speaker at an international meeting held in San José, the capital of his country. But at the same time, a few kilometers away, the bill to support the green hydrogen sector, which has been under discussion for months, has not advanced in the Legislative Assembly.

So, at least for now, Chang-Díaz will remain the only one in his country who can travel in a car that uses green hydrogen as fuel.

This article originally appeared in Knowable Magazine, an independent journalistic endeavor from Annual Reviews. Sign up for the newsletter.

The post The rise of green hydrogen in Latin America appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
4 of the best homes for off-the-grid living https://www.popsci.com/environment/sustainable-home-designs/ Tue, 21 Feb 2023 17:00:00 +0000 https://www.popsci.com/?p=513080
Renewables photo
Christine Rösch

The pros of Earthships, tiny houses, and other forms of sustainable architecture.

The post 4 of the best homes for off-the-grid living appeared first on Popular Science.

]]>
Renewables photo
Christine Rösch

OFF-THE-GRID LIVING is experiencing a renaissance. Dwellings devised to support a sustainable lifestyle could help us adapt to some of our biggest present-day challenges—from a lack of housing for the world’s growing population to pollution and extreme weather. With the climate crisis in mind, architects are looking to more resilient options that don’t depend on the overdrawn electrical grid at all. Some designers are reinvigorating decades-old “biotecture,” like the 1970s Earthships made from reclaimed and natural materials; others are rejecting synthetics and leaning on Indigenous practices of building with natural materials. Meanwhile, weather-resistant domes and 3D-printed dwellings could house more people with fewer resources. We asked architects and engineers about off-the-grid living solutions that could help us adapt to changing environments. 

Earthships

The definition of the term off the grid usually focuses on electricity, but Earthships involve much more. Every feature of these structures, including heating, cooling, water supply, wastewater treatment, electricity, and some food production, is off the grid. Recycled materials like tires and bottles make up the walls and other structural elements; these components are already distributed around the world, so procuring them doesn’t use much energy. Overall, Earthships allow us to be self-sustaining, and therefore happier. 
—Jonah Reynolds, Earthship designer and builder at Pangea Design Build

3D-printed homes

We use trees and other plants to produce the fiber and the resin for printing a home in Maine, so it’s 100 percent renewable. You can change insulation on the walls and roof to make them more energy efficient, so you don’t even get air leaks. If in 200 years, your great-grandchildren don’t want the home anymore, they can grind it up and put it back into the printer and do it again. It makes a good choice for off-the-grid living because it’s customizable to your landscape. It can be made in any shape you desire. If you send in a drawing, in most cases, it can be produced.
—Habib Dagher, executive director of the Advanced Structure and Composites Center at the University of Maine

Tiny houses

A tiny house is generally defined as a dwelling with a main floor of under 450 square feet. Our models come on wheels and can have composting toilets or incinerator toilets, so that means you don’t even need to be hooked up to a sewer. We have special washers, refrigerators, and dishwashers that use a lot less electricity and water than you would in a regular home. We can pre-wire the home so that it’s easy to install solar. Your energy footprint, and just your footprint in general, is much smaller.
—Trine Rieck, lead designer at Tiny Heirloom

Geodesic bioceramic domes

Geodesic domes are constructed with precast ceramic composite materials, which are combinations of ceramics and nontoxic natural fibers like hemp and basalt. The space is really made to mimic the natural environment that humans evolved in. They are highly resilient to fires, floods, hurricanes, and earthquakes, and result in about a 90 percent reduction in carbon footprint. They’re also easy for people to build—it’s kind of like putting together a Lego set. The domes are absolutely a great choice for off-grid living, and I think that at some point, they will be very common choices worldwide.
—Morgan Bierschenk, co-founder and CEO of Geoship

Read more PopSci+ stories.

The post 4 of the best homes for off-the-grid living appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
A new solution could keep old wind turbine blades out of landfills https://www.popsci.com/technology/wind-turbine-chemical-recycling/ Thu, 09 Feb 2023 20:00:00 +0000 https://www.popsci.com/?p=511019
Wind farm silhouette at sunset
Wind farm silhouette. Deposit Photos

Retired wind turbine blades are a massive landfill issue, but a new chemical mixture appears to finally solve the problem.

The post A new solution could keep old wind turbine blades out of landfills appeared first on Popular Science.

]]>
Wind farm silhouette at sunset
Wind farm silhouette. Deposit Photos

Wind turbines are integral to our renewable energy future, but they come with a fatal flaw—their massive turbine blades are often relegated to landfills at the end of their lifespans. There, they remain indefinitely. It’s an unfortunately dire scalability conundrum that requires a remedy sooner than later, but one potential solution not only could provide the industry a way forward—it could take care of the existing backlog of trash.

The world’s largest manufacturer of turbines, Vestas Wind Systems A/S, announced on Tuesday its development of a new chemical solution that can break down turbine blades’ epoxy resin into recyclable material. “Going forward, we can now view old epoxy-based blades as a source of raw material,”  Lisa Ekstrand, Vestas Vice President and Head of Sustainability, said in a statement. Ekstrand added that once the new tech is scaled, all existing and future blade materials can be disassembled and re-used. “This signals a new era for the wind industry, and accelerates our journey towards achieving circularity,” she said.

[Related: A wind turbine just smashed a global energy record—and it’s recyclable.]

Turbine epoxy resins’ resilient chemical properties have long made them extremely difficult to recycle, a fact that looms large over the wind energy sector. Vestas’ statement explains that many mature markets’ first turbines are reaching their lifespans’ end. Industry analyst Wind Europe recently estimated that by 2025, around 25,000 tonnes of blades will be retired annually.

The implementation of the company’s new chemical solution, however, could theoretically overcome the problem entirely while simultaneously taking care of landfill backlogs. According to Mie Elholm Birkbak, Specialist, Innovation & Concepts at Vestas, the novel chemical process relies on already widely available ingredients, and thus can be easily deployed and scaled as needed. What’s more, the solution could be soon applied to all epoxy-based composite materials across a vast number of industries beyond just wind energy.

Vestas’ breakthrough was developed in collaboration with Aarhus University, the Danish Technological Institute, alongside a coalition of industry and academia working towards circular technology for turbine blades.

The post A new solution could keep old wind turbine blades out of landfills appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Hydrogen is supplementing natural gas, but critics remain wary https://www.popsci.com/technology/green-hydrogen-plant-minnesota/ Mon, 06 Feb 2023 21:00:00 +0000 https://www.popsci.com/?p=510261
Black gas stove and two burning flames close-up
Hydrogen can comprise up to five percent of a home's natural gas. Deposit Photos

A Minnesota energy provider is successfully injecting hydrogen into natural gas lines, but scalability remains a major concern.

The post Hydrogen is supplementing natural gas, but critics remain wary appeared first on Popular Science.

]]>
Black gas stove and two burning flames close-up
Hydrogen can comprise up to five percent of a home's natural gas. Deposit Photos

A public utility is experimenting with blending small amounts of carbon-free hydrogen into natural gas lines in some Minnesota homes, but critics argue the procedure remains largely an exercise in hot air.

As first reported last week by Energy News Network, the Midwest’s CenterPoint Energy company began injecting as much as five percent hydrogen gas into downtown Minneapolis residents’ methane supplies for their homes’ stoves and heaters last summer. After various small modifications at the $2.5 million hydrogen pilot production facility (which was built on a former coal gasification plant), the utility provider is now claiming success. But the lengthy list of overall remaining concerns still makes it unlikely to see green hydrogen mixing compose a large portion of future infrastructures.

[Related: A beginner’s guide to the ‘hydrogen rainbow’]

“Green” hydrogen involves utilizing renewable energy to split water molecules into hydrogen and oxygen in a facility, which is how we get hydrogen energy that can then be used to heat homes or fuel industrial production.  Nevertheless, the process remains cost-ineffective when compared to other low- and zero-emission energy sources such as wind and solar. In particular, green hydrogen production operates at between a 30 and 35 percent energy loss, and often requires expensive new plant updates and maintenance.

According to Energy News Networks, CenterPoint’s green hydrogen plant relies in part on wind energy renewable carbon credits, casting doubt on its true “clean” status. Carbon offset credits are a controversial, yet popular, tactic used by a large number of major corporations and industries, but critics are increasingly casting doubt about the strategy’s viability, efficacy, and even trustworthiness.

[Related: Many popular carbon offsets don’t actually counteract emissions, study says]

Despite the drawbacks, the hydrogen production industry is a rapidly growing sector with bipartisan blessing. Last year, the Biden Administration announced $8 billion in funding for states’ developing their hydrogen production, processing, and storage infrastructures, with an aim to lower its cost down to one dollar per kilogram within a decade. Much of this energy isn’t meant for green projects, however, but for petroleum processing and ammonia fertilizer production.

Last year, a report released by San Francisco-based think tank Energy Innovation cast extreme doubt on the alternative’s viability, citing exorbitant costs and society’s extremely limited timeframe for effectively tackling climate change. Further industry advancements and refining may one day result in viable large scale uses for green hydrogen, but funding for those projects will need to be balanced with efficient, realistic, and safe renewable energy sources.

The post Hydrogen is supplementing natural gas, but critics remain wary appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The best home wind turbines of 2023 https://www.popsci.com/gear/best-home-wind-turbines/ Thu, 04 Aug 2022 17:00:00 +0000 https://www.popsci.com/?p=459957
Best Home Wind Turbines
Mike Epstein

Harness your backyard breeze.

The post The best home wind turbines of 2023 appeared first on Popular Science.

]]>
Best Home Wind Turbines
Mike Epstein

We may earn revenue from the products available on this page and participate in affiliate programs. Learn more ›

Best overall Tumo-Int 1000W 3 Blades 48V Wind Turbine Generator Kit is the best overall home wind turbine. Tumo-Int 1000W 3 Blades Wind Turbine
SEE IT

Tumo-Int’s 1000W wind turbine provides enough power to take a bite out of your electric bill.

Best backyard Automaxx Windmill 1500W Wind Turbine is the best for the backyard. Automaxx Windmill 1500W Wind Turbine
SEE IT

With enough space, the Automaxx Windmill 1500W Wind Turbine delivers plenty of power.

Best small Pacific Sky Power Survival Wind Turbine Generator is the best small home wind turbine. Pacific Sky Power Survival Wind Turbine Generator
SEE IT

The Pacific Sky Power Survival Turbine can give you a little power boost when nothing else will.

When most people consider upgrading their homes to take advantage of sustainable energy, they run right to solar panels without considering other options, like wind turbines. While a residential wind turbine doesn’t typically generate enough power on its own to power a house entirely, it can handle a substantial portion of your power needs. It’s enough to drastically reduce your energy bills and, when paired with solar panels and other sustainable power sources, makes off-grid living possible. Whether you want to do your part and help our energy grid go green, give your home its own sustainable power source, or simply want to take a bite out of your energy bills, the best home wind turbines provide a reliable source of sustainable electricity wherever the wind blows. 

How we chose the best home wind turbines

As a tech-nut and green energy enthusiast, I’ve covered a wide range of sustainable energy products for the likes of Popular Science, Scientific American, The Daily Beast, The Manual, and more. These extensively researched selections represent the best wind turbines available right now, based on a combination of first-hand trials, input from industry professionals, and impressions from real buyers.

One critical caveat: In light of ongoing supply chain issues, we’ve elected to focus on turbines that are regularly available from major retailers like Amazon and Home Depot. There are several well-respected options that we’ve elected to leave out at this time, as they have not been in stock and may not be available again for the foreseeable future. We will update this story as more choices become widely available.

The best home wind turbines: Reviews & Recommendations

Our favorite residential wind turbines are made for many purposes and budgets. Some offer a substantial step toward personal energy independence, while others offer a small amount of backup power. Whatever you’re looking for, there should be a turbine for you on this list.

Best overall: Tumo-Int 1000W 3 Blades 48V Wind Turbine Generator Kit

Tumo-Int

SEE IT

Why it made the cut: The Tumo-Int 1000W delivers solid power output combined with reliable design at a relatively affordable price.

Specs

  • Form factor: Standalone
  • Rated Power: 1000W max output
  • Start-up wind speed: 6 mph
  • Rated wind speed: 28 mph
  • Safe wind speed: 90 mph

Pros

  • Strong output
  • Reliable design
  • Automatic direction adjustment
  • Low noise and vibration

Cons

  • Expensive

You’ll need a powerful wind turbine to make a serious dent in your energy bill. When placed well, Tumo-Int 1000W can deliver that kind of power. It performs well at lower wind speeds and boasts a number of features that you won’t find in lesser turbines, such as automatic direction adjustment to boost efficiency.

It’s made to last, and rated for 15 years of maintenance-free operation. It features electromagnetic over-speed protection and overcharge protection to increase its lifespan. It’s also just solidly built: It can survive a bad tropical storm or even a low-level hurricane.

Best backyard: Automaxx Windmill 1500W Wind Turbine

Automaxx

SEE IT

Why it made the cut: The Automaxx Windmill 1500W Wind Turbine offers high output if you’ve got the space for it.

Specs

  • Form factor: Standalone
  • Rated Power: 1500W max output
  • Start-up wind speed: 5.6 mph
  • Rated wind speed: 31 mph
  • Safe wind speed: 110 mph

Pros

  • Strong output
  • Reliable design
  • Bluetooth controllable 
  • Automatic and manual braking system

Cons

  • Very expensive
  • Limited customer support

If you’re looking for a freestanding wind turbine for your backyard, the Automaxx Windmill 1500W is a powerful—if expensive—option. It offers a hearty 1500 watts of continuous output and operates at a relatively wide range of wind speeds. 

It also features maximum power point tracking (MPPT) that avoids voltage surges due to strong wind gusts and boasts both automatic and manual braking. The MPPT Controller can be monitored and controlled via Bluetooth. 

It’s certainly not cheap, but it’s a great home wind turbine if you’re willing to invest.

Best system: Auecoor 800W 12V 24V Solar Panel Wind Turbine Kit

AUECOOR

SEE IT

Why it made the cut: This kit from Auecoor combines solar panels and wind turbines for a more comprehensive green energy solution.

Specs

  • Form factor: Standalone and solar panels
  • Rated Power: 400W max output
  • Start-up wind speed: 6 mph
  • Rated wind speed: 23.5 mph
  • Safe wind speed: 80 mph

Pros

  • All-weather green energy
  • Easy installation
  • Decent power output

Cons

  • Not made from great parts
  • Pole not included

Wind turbines and solar panels are a natural match. Turbines often work best at night when wind speeds tend to be faster, while solar panels store up plenty of energy during the day. Auecoor sells a green energy combo that pairs the two to generate up to 800W of power per hybrid kit. That isn’t enough to power a full home, but the combination provides enough electricity throughout the day to keep your batteries topped or power a smattering of small appliances. 

Candidly, this is as much a recommendation of the concept as it is the actual gear here. Mixing solar panels and a wind turbine is an awesome idea and this kit allows you to do so for less than $1,000, which is quite cheap. That said, users report that the components have a plasticky feel to them, which doesn’t instill a ton of confidence in the product overall. Auecoor offers a 6-year material and workmanship warranty, however, so you have some protection.

Best small: Pacific Sky Power Survival Wind Turbine Generator

Pacific Sky Power

SEE IT

Why it made the cut: This turbine from Pacific Power Sky is ultra-portable and surprisingly affordable.

Specs

  • Form factor: Standalone
  • Rated Power: 15W max output
  • Start-up wind speed: 8 mph
  • Rated wind speed: 25 mph
  • Safe wind speed: 40 mph

Pros

  • Super portable
  • No installation required
  • Solid build quality
  • Good customer service

Cons

  • Low power output

Generating just 15W, the Survival Wind Turbine Generator from Pacific Sky Power is a portable power generator that can help you power up a phone, laptop, or another small device in an emergency situation when you’ve lost power or are far from any other power source.

Folding down to just a few square inches and weighing a mere 3 pounds, this tiny turbine is ideal for camping or backup van-life juice (when you’re off-grid, it never hurts to back up your solar generator back-up). It’s built to last, and won’t short out in the rain.

Obviously, this is not the kind of turbine you want if you’re looking to upgrade your home, but it’s a very useful (and comparatively affordable) way to get basic emergency power anywhere.

Best off-grid: Ramsond Atlas LM3500 Wind Turbine

Ramsond

SEE IT

Why it made the cut: For big power and big durability, the Atlas LM3500 provides the off-grid performance and reliability you need.

Specs

  • Form factor: Standalone
  • Rated power: 3,000W
  • Start-up wind speed: 4.5 mph
  • Rated wind speed: 28 mph
  • Safe wind speed: 110 mph

Pros

  • High power output
  • Built to last
  • Low noise and vibration
  • Professional appearance

Cons

  • Expensive
  • Heavy

If you’re looking for the most power you can get from a single wind-based power source at home, you’ll need a very big turbine. Atlas’ 3,000W LM3500 delivers much more power than any of our other picks and it’s very well built. It’s capable of generating 175 kWh per month, or roughly a quarter of the typical power needs of a low-power-usage home, at less than half its rated wind speed.

With a few of them, or with one and a set of solar panels, you should be able to generate enough power to run an off-grid cabin or a farm that requires intermittent electricity. It’s also solidly built and will provide many years of reliable performance.

It’s certainly not cheap and, at just over 200 pounds, it’s pretty heavy. Given the weight, it also won’t be easy to install. That said, if you have a good place to put it, you’ll have plenty of reliable power.

Best cheap: Pikasola Wind Turbine Generator Kit

Pikasola

SEE IT

Why it made the cut: The Pikasola Wind Turbine Generator Kit delivers decent power output with easy installation at a great price.

Specs

  • Form factor: Wall/roof mounted
  • Rated power: 400W
  • Start-up wind speed: 6 mph
  • Rated wind speed: 29 mph
  • Safe wind speed: 90 mph

Pros

  • Low price
  • Easy installation
  • Durable quality

Cons

  • Lower power output
  • Can get noisy in high wind

For less than $300, the Pikasola Wind Turbine is a very affordable way to dip your toe in the alternative energy pool. With a maximum output of 400W, it’s made to give you just a small amount of power. That said, it’s easy to install, durable, and produces reliable electricity as long as the wind blows. Some owners have reported that it can get noisy at higher wind speeds, but at moderate speeds, it’s essentially silent. Using alternative energy is normally a major investment, but the Pikasola turbine gives you a real way to try the upgrade before you buy in for real.

What to consider when buying a wind turbine

Not all residential wind turbines are created equal. Many don’t generate enough power to make a meaningful difference for many homes. Some are prohibitively expensive or too large to be for residential use. Whatever the case, there are a few things to consider when choosing a wind turbine for your home.

What you can get out of a home wind turbine

According to the Energy Information Administration, The average home in the United States uses approximately 10,000 kilowatt-hours (kWh) per year. To generate that much power, you need alternative energy sources that can harness nearly 30 kWh per day.

Realistically, you aren’t going to generate that much power using wind turbines. With ideal wind conditions, a single home turbine kit should produce about 3 kWh per day. To fully take your home off-grid, you’ll need several industrial-grade wind turbines or a combination of wind turbines and solar panels (the kind you install on your roof or in your backyard, as opposed to the portable kind).

If you adjust your expectations, though, you can get a lot out of even a single home wind turbine. A turbine that generates a maximum output of 400 watts (W) will give you up to 1.3 kWH per day. That’s enough to shave 4 percent off an average 30 kWh electric bill, or power a fridge and a few small devices if the power goes out.

We recommend shooting for the largest possible output that fits your budget and home. Some of our top picks generate 1000W or higher, which can knock the average energy bill down by 10 percent, or provide a moderate amount of backup power.

Who should buy a wind turbine?

Wind turbines can produce a fair amount of green electricity for you, but they need to be placed well. That means you need to take a good, hard look at your property and figure out whether wind power makes sense.

With freestanding turbines, you typically want a large open space like a field, large yard, or hilltop position. For a rooftop turbine, you need to find a spot on your roof that won’t be obstructed by trees where you can secure the turbine safely. Make sure your roof can handle the weight, and it probably shouldn’t be at a sharp incline.

If you don’t want a wide open space or safe spot on your roof that isn’t obstructed, you won’t be able to get the maximum output from the turbines. In that case, you may want to look at other ways of generating sustainable energy.

Type of wind turbine

Wind turbines vary greatly in regard to size, form, power output, and installation difficulty. The one that is right for you depends on your home, space, power needs, and building experience. 

Some wind turbines are smaller and designed to be installed directly onto your roof. They take advantage of the faster winds that tend to whip over your house. These are usually less expensive but they typically generate smaller power outputs. Also, you need to install them on your roof, which may be dangerous.

Standalone turbines tend to be significantly more powerful, but are usually more expensive and require a lot of open space like a field or an unblocked hilltop. They’re also often difficult to install. A rooftop turbine is relatively straightforward to bolt in place while standalone turbines require digging to seat the pole, structural support, running wires to the house, and so on.

Lastly, boat-owners can install smaller marine turbines to help power devices and equipment. While they don’t produce all that much power, they’re built to withstand maritime conditions and can be a great way to ensure that your batteries stay topped off.

Wind speed in your area

All of the specs about power production for wind turbines highlight their best output under ideal wind conditions. The average wind speed where you live can play a huge role in picking the right turbine for your home. To understand how wind speed impacts a turbine, we’ll need to define a few terms:

  • Starting wind speed: the speed at which the blades turn but don’t yet produce usable power.
  • Rated wind speed: the speed at which the turbine reaches its maximum energy output.
  • Safe or “survival” wind speed: the maximum speed before the turbine becomes vulnerable to damage.

Check your local wind averages, including average lows and highs, to make sure that a particular turbine suits your area. Look for a turbine with a starting wind speed below your local average to ensure it works often. If you live somewhere where severe weather conditions occur regularly, safe speed will also be very important.

Installation and maintenance

Anytime you’re messing with your home electrical system, the first rule of thumb is: Hire a professional if you don’t know what you’re doing.

Installing a wind turbine takes a fair amount of know-how. Some of the turbines are very heavy, so the risk of injury is high—doubly so if you’re getting on your roof. Even if you manage to set up the turbine, it will still need to connect to your home’s power, which you leave to a professional. Realistically, most people should consult with a contractor and electrician for this kind of installation.

Also, keep in mind that your wind turbine will need long-term maintenance. While some are designed to operate for over a decade without a tune-up, you will occasionally want an expert to come to look your system over and make repairs as necessary. 

Price

Like solar generators and virtually any kind of power storage, home wind turbines are usually expensive. They come in a wide range of sizes and prices, from a few hundred dollars to a few thousand. Moreover, while we’ve highlighted comparatively good options at many price points, the turbines that generate a meaningful amount will be fairly expensive.

Like installing solar panels on or around your home, you should think of setting up a wind turbine as a home improvement project and an investment. If you buy a better turbine, you will notice a bigger difference in your energy bills, and likely recoup the cost of installing it more quickly.

FAQs

Q: How big of a wind turbine do you need to power a house?

The average American household uses between 8,000 and 10,000 kWh per year, so to match that you need roughly 800 kWh per month, or just shy of 30 kWh per day. The average 1,000 W wind turbine is capable of generating approximately 3 kWh per day, so you’re either going to need nearly a dozen turbines to generate that much energy and only if you have enough open space to place them well. Given that, most people simply cannot power a house using wind power alone. 

Most residential wind turbine owners with one or two turbines use them to cut down on energy costs and/or to provide emergency backup power in an emergency.

Q: Are home wind turbines worth it?

If you want to reduce your reliance on the power grid, a wind turbine can certainly cut down on your electrical bills in a sustainable way. It also gives you some built-in emergency power in the event of a blackout or another emergency. Either way, the reduction in your electricity bill should eventually pay back the cost of the turbine.

That said, a wind turbine will not fully replace conventional electricity from your local power company.

Q: Can I put a small wind turbine on my roof?

Yes, there are small wind turbines that are specifically designed for rooftop installation. Keep in mind that these often generate less energy than large, standalone turbines.

Q: Are bladeless wind turbines better?

Bladeless turbines can cost less and can require less maintenance, but bladed or “horizontal axis” wind turbines can produce more power at lower wind speeds. For the typical homeowner living in a region with low to moderate wind speeds, a traditional bladed turbine is likely the most effective option.

Final thoughts on the best home wind turbines

Installing one of the best home wind turbines is a major home improvement project. You shouldn’t do it carelessly. Take your time and do some research to figure out what options, if any, will work on your property. If you have the space and the inclination, wind power can be an amazing, sustainable resource. 

Why trust us

Popular Science started writing about technology more than 150 years ago. There was no such thing as “gadget writing” when we published our first issue in 1872, but if there was, our mission to demystify the world of innovation for everyday readers means we would have been all over it. Here in the present, PopSci is fully committed to helping readers navigate the increasingly intimidating array of devices on the market right now.

Our writers and editors have combined decades of experience covering and reviewing consumer electronics. We each have our own obsessive specialties—from high-end audio to video games to cameras and beyond—but when we’re reviewing devices outside of our immediate wheelhouses, we do our best to seek out trustworthy voices and opinions to help guide people to the very best recommendations. We know we don’t know everything, but we’re excited to live through the analysis paralysis that internet shopping can spur so readers don’t have to.

The post The best home wind turbines of 2023 appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
When wind turbines kill bats and birds, these scientists want the carcasses https://www.popsci.com/environment/birds-bats-renewables/ Wed, 25 Jan 2023 02:00:00 +0000 https://www.popsci.com/?p=507399
A red-tailed hawk takes off from an idle turbine blade in near Livermore, California, in 2013.
A red-tailed hawk takes off from an idle turbine blade in near Livermore, California, in 2013. Michael Macor/The San Francisco Chronicle via Getty Images

Collecting, studying, and storing the remains from wind and solar facilities, scientists say, can unlock new insights.

The post When wind turbines kill bats and birds, these scientists want the carcasses appeared first on Popular Science.

]]>
A red-tailed hawk takes off from an idle turbine blade in near Livermore, California, in 2013.
A red-tailed hawk takes off from an idle turbine blade in near Livermore, California, in 2013. Michael Macor/The San Francisco Chronicle via Getty Images

This article was originally featured on Undark.

“This is one of the least smelly carcasses,” said Todd Katzner, peering over his lab manager’s shoulder as she sliced a bit of flesh from a dead pigeon lying on a steel lab table. The specimens that arrive at this facility in Boise, Idaho, are often long dead, and the bodies smell, he said, like “nothing that you can easily describe, other than yuck.”

A wildlife biologist with the U.S. Geological Survey, a government agency dedicated to environmental science, Katzner watched as his lab manager rooted around for the pigeon’s liver and then placed a glossy maroon piece of it in a small plastic bag labeled with a biohazard symbol. The pigeon is a demonstration specimen, but samples, including flesh and liver, are ordinarily frozen, catalogued, and stored in freezers. The feathers get tucked in paper envelopes and organized in filing boxes; the rest of the carcass is discarded. When needed for research, the stored samples can be processed and sent to other labs that test for toxicants or conduct genetic analysis.

 

Most of the bird carcasses that arrive at the Boise lab have been shipped from renewable energy facilities, where hundreds of thousands of winged creatures die each year in collisions with turbine blades and other equipment. Clean energy projects are essential for confronting climate change, said Mark Davis, a conservation biologist at the University of Illinois at Urbana-Champaign. But he also emphasized the importance of mitigating their effects on wildlife. “I’m supportive of renewable energy developments. I’m also supportive of doing our best to conserve biodiversity,” Davis said. “And I think the two things can very much coexist.”

To this end, Katzner, Davis, and other biologists are working with the renewable energy industry to create a nationwide repository of dead birds and bats killed at wind and solar facilities. The bodies hold clues about how the animals lived and died, and could help scientists and project operators understand how to reduce the environmental impact of clean energy installations, Davis said.

The repository needs sustained funding and support from industry partners to supply the specimens. But the collection’s wider potential is vast, Davis added. He, Katzner, and other stakeholders hope the carcasses will offer a wide array of wildlife biologists access to the animal samples they need for their work, and perhaps even provide insights into future scientific questions that researchers haven’t thought yet to ask.


In 1980, California laid the groundwork for one of the world’s first large-scale wind projects when it designated more than 30,000 acres east of San Francisco for wind development, on a stretch of land called the Altamont Pass. Within two decades, companies had installed thousands of wind turbines there. But there was a downside: While the sea breeze made Altamont ideal for wind energy, the area was also well-used by nesting birds. Research suggested they were colliding with the turbines’ rotating blades, leading to hundreds of deaths among red-tailed hawks, kestrels, and golden eagles.

“It’s a great place for a wind farm, but it’s also a really bad place for a wind farm,” said Albert Lopez, planning director for Alameda County, where many of the projects are located.

A 2004 report prepared for the state estimated deaths and offered recommendations that the authors said could add up to mortality reductions of anywhere from 20 to 50 percent. The most effective solution, the authors argued, involved replacing Altamont’s many small turbines with fewer larger turbines. But, the authors wrote, many measures to reduce deaths would be experimental, “due to the degree of uncertainty in their likely effectiveness.” More than a decade of research, tensions, and litigation followed, focused on how to reduce fatalities while still producing clean electricity to help California meet its increasingly ambitious climate goals.

While all this was happening, Katzner was earning his Ph.D. by studying eagles and other birds — and beginning to amass a feather collection halfway around the world. In Kazakhstan, where he has returned nearly every summer since 1997 to conduct field research, Katzner noticed piles of feathers underneath the birds’ nests. Carrying information about a bird’s age, sex, diet, and more, they were too valuable a resource to just leave behind, he thought, so he collected them. It was the start of what he describes as a compulsion to store and archive potentially useful scientific material.

Katzner went on to co-publish a paper in 2007, in which the researchers conducted a genetic analysis of naturally shed feathers, a technique that could allow scientists to match feather samples with the correct bird species when visual identifications are difficult. He later towed deer carcasses across the East Coast to lure and trap golden eagles in order to track their migration patterns. And today, part of his research involves testing carcasses for lead and other chemicals to understand whether birds are coming in contact with toxicants.

For the last decade, Katzner has also researched how birds interact with energy installations like wind and solar projects. During this time, studies have estimated that hundreds of thousands of birds die each year at such facilities in the United States. Thats’s still a small fraction of the millions of birds that at least one paper estimated are killed annually due to habitat destruction, downstream climate change, and other impacts of fossil fuel and nuclear power plants. But renewable energy is growing rapidly, and researchers are trying to determine how that continued growth might affect wildlife.

Bats seem attracted to spinning wind turbines, sometimes being struck by the blades while attempting to roost in the towers. Birds sometimes swoop down and crash into photovoltaic solar panels — possibly thinking the glass is water that is safe for landing. A separate, less common solar technology that uses mirrors to concentrate the sun’s rays into heat energy is known to singe birds that fly too close — a factor that has drawn opposition to such facilities from bird activists. But scientists still don’t fully understand these many interactions or their impacts on bird and bat populations, which makes it harder to prevent them.

In 2015, by then on staff at the USGS, Katzner and a team of other scientists secured $1 million from the California Energy Commission to study the impacts of renewable energy on wildlife — using hundreds of carcasses from the Altamont Pass. NextEra Energy, one of the largest project owners there, chipped in a donation of approximately 1,200 carcasses collected from their facilities in Altamont.

The team analyzed 411 birds collected over a decade at Altamont and another 515 picked up during a four-year period at California solar projects. They found that the birds originated from across the U.S., suggesting renewable facilities could affect far away bird populations during their migrations. In early 2021, Katzner and a team of other scientists published a paper examining specimens collected at wind facilities in Southern California. Their results suggested that replacing old turbines with fewer, newer models did not necessarily reduce wildlife mortality. Where a project is sited and the amount of energy it produces are likely stronger determinants of fatality rates, the authors said.

In the Altamont, scientists are still working to understand impacts for birds and bats, with a technical committee created to oversee the work. Ongoing efforts to replace old turbines with newer ones are meant to reduce the number of birds killed there, but whether it’s working remains an open question, said Lopez. Installing fewer turbines that produce more energy per unit than earlier models was expected to provide fewer collision points for birds and more space for habitat. And when new turbines are put in, scientists can recommend spots within a project site where birds may be less likely to run into them. But other variables influence mortality aside from turbine size and spacing, according to the 2021 paper authored by Katzner and other scientists, like season, weather, and bird behavior in the area.

On a small road in the Altamont, a white sign marks an entrance to NextEra’s Golden Hills wind project, where the company recently replaced decades-old turbines with new, larger models. Not far away, another wind project sits dormant — a relic from another time. Its old turbines stand motionless, stocky, and gray next to their graceful, modern successors on the horizon. The hills are quiet except for the static buzz of power cables.

Some conservationists are still concerned about the area. In 2021, the National Audubon Society, which says it strongly supports renewable energy, sued over the approval of a new wind project in the Altamont, asserting that the county didn’t do enough environmental review or mitigation for bird fatalities.

Katzner attributes his work in California with the beginnings of the repository, which he’s dubbed the Renewables-Wildlife Solutions Initiative. Amy Fesnock, a Bureau of Land Management wildlife biologist who collaborates with Katzner, simply calls it the “dead body file.”

In Idaho, Katzner has already amassed more than 80,000 samples — many drawn from the feather collection he’s kept for decades, and thousands more recently shipped in by renewable energy companies and their partners. Ultimately, Katzner would like to see a group of repository locations, all connected by a database. This would allow other scientists to access the bird and bat samples and use them in a variety of ways, extracting their DNA, for example, or running toxicology tests.

“Every time we get an animal carcass, it has value to research,” said Katzner. “If I think about it from a scientific perspective, if you leave that carcass out there in the field, you’re wasting data.”

That data is important to people like Amanda Hale, a biologist who helped build the repository while at Texas Christian University. She is now a senior research biologist at Western Ecosystems Technology, a consulting company that, along with providing other services, surveys for dead wildlife at renewable energy sites. Part of her new role involves liaising with clean energy companies and the government agencies that regulate them, making sure decision makers have the most current science to inform projects. Better data could assist clients in putting together more accurate conservation plans and help agencies know what to look for, she said, making regulation more straightforward.

“Once we can understand patterns of mortality, I think you can be better in designing and implementing mitigation strategies,” said Hale.

The initiative is not without its skeptics, though. John Anderson, executive director of the Energy and Wildlife Action Coalition, a clean energy membership group, sees merit in the effort but worries that the program could be “used to characterize renewable energy impacts in a very unfavorable light” without recognizing its benefits. The wind industry has long been sensitive to suggestions that it’s killing birds.

Several renewable energy companies that Undark contacted for this story did not respond to inquiries about wildlife monitoring at their sites or stopped responding to interview requests. Other industry groups, including the American Clean Power Association and the Renewable Energy Wildlife Institute, declined interview requests. But many companies appear to be participating — in Idaho, Katzner has received birds from 42 states.

 

William Voelker, a member of the Comanche Nation who has led a bird and feather repository called Sia for decades, says he’s frustrated at the lack of consideration for tribes from these types of U.S. government initiatives. Indigenous people, he said, have first right to “species of Indigenous concern.” His repository catalogs and sends bird carcasses and feathers to Indigenous people for ceremonial and religious purposes, and Voelker also cares for eagles.

“At this point we just don’t have any voice in the ring, and it’s unfortunate,” said Voelker.

Katzner, for his part, says he wants the project to be collaborative. The Renewable-Wildlife Solutions Initiative has sent some samples to a repository in Arizona that provides feathers for religious and ceremonial purposes, he said, and the RWSI archive could ship out other materials that it does not archive, but it has not yet contacted other locations to do so.

“It’s a shame if those parts of birds are not being used,” he said. “I’d like to see them get used for science or cultural purposes.” 


Many U.S. wind farms already monitor and collect downed wildlife. At a California wind facility an hour north of Altamont, the Sacramento Municipal Utility District tries to clear out its freezers at least once per year — before the bodies start to smell, said Ammon Rice, a supervisor in the government-owned utility’s environmental services department. The specimens that companies accumulate are often kept until they’re thrown out. Until recently, samples had been available to government and academic researchers on only a piecemeal basis.

There are many reasons why a clean energy company might employ people to pick up dead animals at its facility: Some states require companies to survey sites during certain stages of their development and keep track of how many birds and bats are found dead. Removing the carcasses can also deter scavengers, such as coyotes, foxes, and vultures. And the federal government has set voluntary conservation guidelines for wind projects; for some companies, complying with the recommendations is part of maintaining good political relationships.

Most of the time, human searchers canvas a project, walking transects under turbines or through solar fields. It’s “enormously labor intensive,” said Trevor Peterson, a senior biologist at Stantec, one of the consulting firms often hired to conduct those surveys. On some sites, trained dogs sniff out the dead bodies.

 

For years, conservation biologists have wanted to find a use for the creatures languishing in freezers at clean energy sites around the country. To get a nationwide project off the ground, Katzner started working with two other researchers: Davis, the conservation biologist at University of Illinois, and Amanda Hale, then a biology professor at Texas Christian University. They were part of a small community of people “who pick up dead stuff,” said Katzner. The three started meeting, joined by scientists at the Bureau of Land Management and the U.S. Fish and Wildlife Service, who helped connect the initiative with additional industry partners willing to send carcasses.

Building on Katzner’s existing samples, the repository has grown from an idea to a small program. In the last two years, it received about $650,000 from the Bureau of Land Management and earned a mention in the agency’s recent report to Congress about its progress towards renewable energy growth.

Davis had already been accepting samples from wind facilities when he started working on the repository. Often the bodies are mailed to his laboratory, but he prefers to organize hand-to-hand deliveries when possible, after one ill-fated incident in which a colleague received a shipped box of “bat soup.” To receive deliveries in person, Davis often winds up loitering in the university parking lot, waiting for the other party to arrive so they can offload the cargo.

“It sounds a lot like an illicit drug deal,” said Davis. “It looks a lot like an illicit drug deal — I assure you it is not.”

Recently, Ricky Gieser, a field technician who works with Davis, drove two and a half hours from Illinois to central Indiana to meet an Ohio wildlife official in the parking lot of a Cracker Barrel. Davis arranged for Undark to witness the exchange through Zoom. With latex-gloved hands, Gieser transferred bags of more than 300 frozen birds and bats — lifting them from state-owned coolers and then gingerly placing them into coolers owned by his university. The entire transaction was over in under 15 minutes, but coordinating it took weeks.

Davis studies bats and other “organisms that people don’t like,” with a focus on genetics. He grew up in Iowa chasing spiders and snakes and now stores a jar of pickled rattlesnakes — a souvenir from his doctoral research — on a shelf behind his desk. Protecting these creatures, he said, is of extreme importance. Bats provide significant economic benefit, eating up bugs that harm crops. And their populations are declining at an alarming rate: A disease called white-nose syndrome has wiped out more than 90 percent of the population of three North American bat species in the last decade. In late November of 2022, the U.S. Fish and Wildlife Service listed Davis’s favorite species, the northern long-eared bat, as endangered.

For certain species, deaths at wind facilities are another stressor on populations. Scientists expect climate change to make the situation worse for bats and overall biodiversity. “Because of this confluence of factors, it’s just really tough for bats right now,” said Davis. “We need to work a lot harder than we are to make life better for them.”

Like other wildlife researchers, Davis has sometimes struggled to get his hands on the specimens he needs to track species and understand their behaviors. Many spend time in the field, but that’s costly. Depending on the target species, acquiring enough animals can take years, said Davis. He used museum collections for his doctoral dissertation, and still views them as an “untapped font of research potential.” But museums often focus on keeping samples intact for preservation and future research, so they may not work for every project.

That leaves salvage. Frozen bird and bat carcasses are “invaluable” to scientists, said Fesnock, the BLM wildlife biologist. So far, samples collected as part of the Renewables-Wildlife Solutions Initiative have led to about 10 scientific papers, according to Katzner. Davis says the collection could reduce research costs for some scientists by making a large number of samples available, particularly for species that are hard to collect. It’s difficult for scientists to catch migratory bats that fly high in the air with nets, making it challenging to estimate population levels. Bat biologists say there’s much we still don’t know about their behaviors, range, and number.


As scientists work to compile better data, a few companies are experimenting with mechanization as a possible way to reduce fatalities at their facilities. At a wind farm in Wyoming, utility Duke Energy has installed a rotating camera that resembles R2D2 on stilts. The technology, called IdentiFlight, is designed to use artificial intelligence to identify birds and shut turbines down in seconds to avoid collisions.

Prior to IdentiFlight, technicians used to set up lawn chairs amid the 17,000-acre site and look skyward, sometimes eight hours a day, to track eagles. It was an inefficient system prone to human error, said Tim Hayes, who recently retired as the utility’s environmental development director. IdentiFlight has reduced eagle fatalities there by 80 percent, he added. “It can see 360 degrees, where humans can’t, and it never gets tired, never blinks, and never has to go to the bathroom.”

Biologists say there are still unknowns around the efficacy of these types of technologies, in part because of incomplete data on the population size and spread of winged wildlife.

Katzner and his colleagues want the repository to help change this, but first they will need long term funding to help recruit more partners and staff. Davis estimated he needs between $1 and $2 million to build a sustainable repository at his university alone. Ideally, the USGS portion of the project in Boise would have its own building. For now, Katzner stores feathers in a space that doubles as a USGS conference room. Next door, in a room punctuated with a dull hum, the walls are lined with freezers. Some carry samples already cataloged. Others hold black trash bags filled with bird and bat bodies just waiting to be processed.


This article was originally published on Undark. Read the original article.

Birds photo

The post When wind turbines kill bats and birds, these scientists want the carcasses appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The next generation of US nuclear plants could be tiny but powerful https://www.popsci.com/technology/small-modular-nuclear-reactor-approval/ Tue, 24 Jan 2023 21:00:00 +0000 https://www.popsci.com/?p=507518
NuScale small modular reactor nuclear plant concept art
Don't expect the next-gen reactors to show up anytime soon, though. NuScale Power

The newly approved small modular reactor is just one-third the size of traditional designs.

The post The next generation of US nuclear plants could be tiny but powerful appeared first on Popular Science.

]]>
NuScale small modular reactor nuclear plant concept art
Don't expect the next-gen reactors to show up anytime soon, though. NuScale Power

The US Nuclear Regulatory Commission recently announced its approval of the designs for a first-of-its-kind small modular reactor (SMR). This could signal a potential shift in the development and integration of next generation power plants in the US. While traditional nuclear facilities have long been based on very narrow specifications—think the instantly recognizable cooling towers—NuScale Power honed its SMR design over nearly a decade following early concept research undertaken at Oregon State University.

[Related: How to survive a nuclear bomb shockwave.]

Unlike existing plants, NuScale’s modular SMR allows for most of its components to be assembled within factories, hypothetically making them both cheaper and simpler to build on-site—although it remains to be seen if these new plants can break the stereotypically astronomical cost increases associated with nuclear construction. When completed, NuScale’s VOYGR™ SMR can house 12 factory-built power modules, each capable of generated 50 megawatts of power while taking up roughly a third the space of traditional large-scale reactors. The modules also only rely on natural processes like gravity and convection to cool the reactor without the need for any additional water, power, or operators.

Despite clearing the major regulatory hurdle, actual deployment of NuScale’s SMR is still years away. The company is currently working alongside the Department of Energy and  utility provider Utah Associated Municipal Power Systems to construct a demonstration facility at the Idaho National Laboratory. The first module is expected to come online in 2029, with full 462 megawatt plant capabilities scheduled for the following year.

[Related: How nuclear fusion could use less energy.]

Even then, numerous concerns remain surrounding the nuclear industry as a whole, from nuclear waste disposal, to uranium mining concerns, to the potential safety issues. Despite huge strides in design and size, NuScale’s SMR still must tackle some of those worries.

Still, the NRC’s recent approval of the first small modular reactor could soon usher in a major new era for nuclear energy. If nothing else, it’s not everyday that you hear of a new nuclear plant getting the greenlight—as The Verge also noted on Monday, the NRC has only approved six previous nuclear plant designs, all of which are much larger than NuScale’s proposed alternative.

The post The next generation of US nuclear plants could be tiny but powerful appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
How the Inflation Reduction Act can help you save cash and energy https://www.popsci.com/diy/how-to-get-tax-credits-for-solar-electric-cars/ Thu, 12 Jan 2023 11:00:00 +0000 https://www.popsci.com/?p=504832
solar panels on a roof
Integrating solar to your home is one way you can apply for tax credits from the Inflation Reduction Act. Deposit Photos

From new solar panels to EVs, your 2023 sustainability goals might be a little easier to achieve with IRA tax credits.

The post How the Inflation Reduction Act can help you save cash and energy appeared first on Popular Science.

]]>
solar panels on a roof
Integrating solar to your home is one way you can apply for tax credits from the Inflation Reduction Act. Deposit Photos

Government incentives might encourage you to add another goal to your new year’s resolutions in 2023: reducing your carbon footprint. Starting this year, Americans can take advantage of a stream of tax credits to make their homes, cars, and businesses more sustainable thanks to the Inflation Reduction Act (IRA).

The new legislation narrowly passed Congress after a lengthy political battle in the Senate last August. Considered one of President Biden’s signature achievements, the $440 billion package provides money for clean energy and lowers drug costs for older people, among other things. The government plans to pay for the credits through raising taxes on corporations that make over $1 billion in profit per year, taxing stock buybacks and investing in the Internal Revenue Services to catch tax cheats. If all works out as planned, the package will actually bring in $300 billion extra dollars, which will go towards paying off government debt.

Climate policy experts like Rachel Cleetus, the policy director for the climate and energy program at the Union of Concerned Scientists, see the IRA as the stimulus the country needs to make America’s energy infrastructure more sustainable, even if it’s just an initial step to meeting emission reduction goals. Cleetus says the law is the culmination of years of work.

“It’s a moment of relief, more than anything else,” she says. “Clean energy is already so competitive in the marketplace, here in the US and around the world, and this will really tip the scales in favor of accelerating that momentum around renewable energy, wind, solar, etc.”

With a receipt and tax form, consumers can save up to thousands of dollars on everything from electric cars to solar panels to two-pane windows. As you take stock of your sustainability resolutions this year, review how to apply for IRA credits.

“By being proactive, consumers can have a plan to make the most cost-effective upgrades for their specific housing and local policy circumstances once IRA funding is made available,” says Dan Esposito, a senior policy analyst at the an energy and climate policy think tank, Energy Innovation.

What are the tax credits?

There are two main buckets of credits you might qualify for: electric vehicle credits and home improvement credits. The first is purchasing an electric vehicle. To reap maximum benefits from the credits, you’ll want to make sure that it complies with a long list of technical and trade manufacturing requirements, like making sure the vehicle’s final assembly was in a US facility. 

Consumers should pay special attention to electric vehicle credits because they will most likely give buyers “the biggest bang for their buck,” Esposito wrote in an email to PopSci. A new electric vehicle can qualify for up to a $7,500 credit and used vehicles could be $4,000. (You can find more details about IRA tax credits from electric vehicles in our guide.) 

“The tax credits for electric vehicles are generally most impactful in terms of reducing one’s climate footprint, as the average US passenger vehicle emits roughly 60 percent more greenhouse gases than the average US home using natural gas,” he says. “However, the [exact] climate benefit depends on several factors, such as the vehicle you currently have (hybrid vs. gas guzzler), how often you drive, the climate you live in, and your home’s insulation,” Esposito writes.  

[Related: Check before you buy: Here are the new EVs that qualify for the clean vehicle tax credit]

The second bucket of IRA credits can be collected by reducing your home’s emissions through switching to renewable energy and making it more energy efficient. Consumers can save money on a range of products designed to reduce their home’s reliance on fossil fuels. You can get money for putting a solar panel on your roof. You can also get money from buying energy efficient products like two-pane windows that better insulate your house. You can also receive a $300 tax credit for purchasing a heat pump, instead of the typical furnace or energy inefficient air conditioners that most Americans own. 

If you plan to replace both the furnace and an air conditioning unit, then the tax credit for heat pumps could be worthwhile as well. How much you actually get back in credits, however, will vary from house to house—wiring might need to be upgraded or a heat pump designed to tolerate colder climates. “The timing of when these credits will become available will vary by state, with state energy offices set to play the dominant role in facilitating their rollout,” Esposito writes. “In the meantime, homeowners can assess the state of their house to determine which upgrades to seek out in the coming years.”

While renters might be locked out of some credits that require home ownership, they are still eligible for many incentives. It might be worth it to make the long-term investments if they plan to stay in their rental space for a year or more, Cleetus says.

[Related: How heat pumps can help fight global warming]

“The question for renters is obviously, how long are you going to be in a place? And is that something that you and your landlord want to split the cost?” she says. “In some cases, you can recoup the cost within a year, so even if you’re renting for just a year, it might make sense to do it.”

For example, it might make sense to purchase a more energy efficient air conditioner that will save you money on heating and cooling bills in the long run. And with the insulation-related tax credits, you can recoup the cost faster, perhaps in a year or two, than you would otherwise, according to Cleetus.

What to know before filing for the credits

Consumers should research what tax credits they can take advantage of before they buy any green products, says Susan Allen, senior manager for tax practice and ethics with the American Institute of Certified Professional Accountants (CPA). 

The amount of money you get will differ depending on your income, the number of dependents you have, and if you rent or own your home, so it’s important to do your research before buying anything that could have a tax credit or an upfront discount, Cleetus and Allen say.

“Planning before you buy helps you make the most informed decision on the ultimate savings you can accomplish,” Allen says. “If you can work with a CPA tax or financial planner, wonderful. They can help guide you and maybe save a lot of time and headache while you might be trying to navigate it.”

One of the best ways to make sure you can cash in on the credits is to ask the manufacturer before you make a purchase, Allen says. Car dealers will be aware of which vehicles qualify for the credits and appliance companies that manufacture electric stoves or other green products will likely know how much you can save. 

Cleetus says stores should start adopting labels that indicate if a product is eligible for tax credits. “That’s the kind of thing that will be really impactful, so that people don’t have to search,” she says. 

[Related: The Inflation Reduction Act and CHIPS could kick US climate policy back into action]

If you don’t have an accountant, you can also take advantage of a number of government guides, Allen and Cleetus say. Consumers can refer to the White House’s interactive clean energy website, which helps users determine what credits are available to them. The Department of Energy published a list of the credits people can save specifically on green energy and energy-efficient household appliances. The Internal Revenue Services details the cars eligible for electric vehicle credits. For those who want a more thorough breakdown of the credits, the White House also published a 183-page guidebook. And further guidance is still coming out, Cleetus says. 

And while the tax credits can help you save money on clean energy investments, the IRA doesn’t quite live up to what the country promised during global climate negotiations.The US pledged to reduce greenhouse gas emissions by 50 to 52 percent by 2030. The package aims to reduce emissions by about 40 percent. “It’s not enough, for sure. From a science perspective, we know we have to go further, faster,” Cleetus says. 

Still, the IRA is a vital step in accelerating the nationwide transition to clean energy infrastructure. “It’s important to think about this in a holistic way,” Cleetus says. “These tax credits will go a long way towards many, many households lowering their carbon footprint. But they’re also part of a broader system that has to shift.”

The post How the Inflation Reduction Act can help you save cash and energy appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Scientists just got one step closer to solar-powered recycling plants https://www.popsci.com/environment/solar-recycling-device-plastic-co2/ Mon, 09 Jan 2023 16:00:00 +0000 https://www.popsci.com/?p=503968
Sunlight shining on solar recycling system experiment
The new breakthrough could one day usher in solar recycling plants. University of Cambridge

A relatively simple new invention can break down plastic bottles into glycolic acid.

The post Scientists just got one step closer to solar-powered recycling plants appeared first on Popular Science.

]]>
Sunlight shining on solar recycling system experiment
The new breakthrough could one day usher in solar recycling plants. University of Cambridge

Wasting resources is a huge cause of environmental degradation. At our current rate, we’re on track to 3.4 billion metric tons of solid trash by 2050. This route is completely untenable for both civilization and the overall environment, but given that roughly only 20 percent of that is currently recycled annually, we’ll need to get really creative quickly to address this issue.

Researchers at the University of Cambridge found a potential solution to this challenge by recently developing a novel process using just energy from the sun to transform plastic trash and greenhouse gasses into sustainable fuel and other valuable materials. As detailed in the journal Nature Synthesis, the team successfully created a solar-powered reactor capable of transforming CO2 into syngas, a pivotal component within sustainable liquid fuels. At the same time, the setup also managed to take plastic bottles and break them down into glycolic acid, a chemical often used within the cosmetics industry.

[Related: A potentially revolutionary solar harvester just left the planet.]

The new integrated reactor contains two compartments, one for the greenhouse gasses and one for the plastic waste, reliant on a new and promising silicon alternative, perovskite, for its solar cells. Persovskite innovations have rapidly improved its efficiency rates from just 3 percent in 2009 to recently over 25 percent. As such, it could soon become a major component of solar power manufacturing, although barriers still need overcoming for its stability, lifespan, and scalability.

From there, researchers created different catalysts for the light absorber, which changed the final recycled product depending on which one was used, including CO, syngas, and glycolic acid. What’s more, the breakthrough reactor pulled all this off with a greater efficiency than standard photocatalytic CO2 methods, all BY simply shining sunlight into the setup.

“A solar-driven technology that could help to address plastic pollution and greenhouse gasses at the same time could be a game-changer in the development of a circular economy,” says the study’s co-first author, Subhajit Bhattacharjee.

[Related: Solar energy company wants to bolt panels directly into the ground.]

Researchers’ ability to fine-tune the integrated reactor’s end result products depending on the input catalyst also shows immense promise for additional outputs. The paper notes that, although the initial studies were limited to simple carbon-based molecules, future experiments could result in far more complex products. Further advancements along these lines could even one day offer a new type of entirely solar-powered recycling plant, ostensibly providing society with a circular economy in which very little, if anything, is wasted.

“Developing a circular economy, where we make useful things from waste instead of throwing it into landfill, is vital if we’re going to meaningfully address the climate crisis and protect the natural world,” said the study’s other co-first author, Motiar Reisner. “And powering these solutions using the Sun means that we’re doing it cleanly and sustainably.”

The post Scientists just got one step closer to solar-powered recycling plants appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The EPA wants more ‘renewable’ fuel. But what does that actually mean? https://www.popsci.com/environment/epa-renewable-energy-fuel/ Sat, 07 Jan 2023 02:00:00 +0000 https://www.popsci.com/?p=503658
The United States is the largest producer of corn, which can be seen being harvested and stored in grain silos. With 40 percent of the corn produced used for ethanol, environmental groups argue that increased corn production leads to more fertilizer use and pollution.
The United States is the largest producer of corn, which can be seen being harvested and stored in grain silos. With 40 percent of the corn produced used for ethanol, environmental groups argue that increased corn production leads to more fertilizer use and pollution. Getty Images

'Renewable fuels' like ethanol and biogas come at an environmental cost.

The post The EPA wants more ‘renewable’ fuel. But what does that actually mean? appeared first on Popular Science.

]]>
The United States is the largest producer of corn, which can be seen being harvested and stored in grain silos. With 40 percent of the corn produced used for ethanol, environmental groups argue that increased corn production leads to more fertilizer use and pollution.
The United States is the largest producer of corn, which can be seen being harvested and stored in grain silos. With 40 percent of the corn produced used for ethanol, environmental groups argue that increased corn production leads to more fertilizer use and pollution. Getty Images

This story was originally published by Grist. You can subscribe to its weekly newsletter here.

The U.S. Environmental Protection Agency has proposed new standards for how much of the nation’s fuel supply should come from renewable sources. 

The proposal, released last month, calls for an increase in the mandatory requirements set forth by the federal Renewable Fuel Standard, or RFS. The program, created in 2005, dictates how much renewable fuels — products like corn-based ethanol, manure-based biogas, and wood pellets — are used to reduce the use of petroleum-based transportation fuel, heating oil, or jet fuel and cut greenhouse gas emissions. 

The new requirements have sparked a heated debate between industry leaders, who say the recent proposal will help stabilize the market in the coming years, and green groups, which argue that the favored fuels come at steep environmental costs. 

Below is a Grist guide to this growing debate, breaking down exactly what these fuels are, how they’re created, and how they would change under the EPA’s new proposal:

The fuels

Renewable fuel is an umbrella term for the bio-based fuels mandated by the EPA to be mixed into the nation’s fuel supply. The category includes fuel produced from planted crops, planted trees, animal waste and byproducts, and wood debris from non-ecological sensitive areas and not from federal forestland. Under the RFS, renewable fuels are supposed to replace fossil fuels and are used for transportation and heating across the country, and are supposed to emit 20 percent fewer greenhouse gasses than the energy they replace.

Under the new EPA proposal, renewable fuels would increase by roughly 9 percent by the end of 2025 — an increase of nearly 2 billion gallons. The new EPA proposal will set a target of almost 21 billion gallons of renewable fuels in 2023, which includes over 15 billion gallons of corn ethanol. By 2025, the EPA hopes to have over 22 billion gallons of different renewable fuel sources powering the nation. 

Advanced biofuel, a type of renewable fuel, includes fuel created from crop waste, animal waste, food waste, and yard waste. This also includes biogas, a natural gas produced from the methane created by animal and human waste. Advanced biofuel can also include fuels created from sugars and starches, apart from ethanol. 

In its newest proposal, the EPA suggests a roughly 14 percent increase in the use of these fuels from 2023 to 2024 and a 12 percent increase the year after that. The EPA wants roughly 6 billion gallons of advanced biofuel in the marketplace by this year.

Nestled inside of the advanced biofuel category is biomass-based diesel, a fuel source created from vegetable oils and animal fats. This fuel can also be created from oils, waste, and sludge created in municipal wastewater treatment plants. Under the new EPA proposal, the agency is suggesting a 2 percent year-over-year increase in these fuels by the end of 2025, which equals a final amount of nearly three billion gallons.

Cellulosic biofuel, another type of renewable fuel, is a liquid fuel created by “crops, trees, forest residues, and agricultural residues not specifically grown for food, including from barley grain, grapeseed, rice bran, rice hulls, rice straw, soybean matter,” as well as sugarcane byproducts, according to the 2005 law.

“In the interim period, there’s going to be a need for lower carbon, renewable liquid fuels”

Geoff Cooper, president and CEO of the Renewable Fuel Association

The EPA’s recent proposal aims for nearly double the amount of the use of these fuels by 2024. Then a 50 percent increase the year after, equivalent to 2 billion gallons. 

The new RFS proposal also hopes to create a more standardized pathway for renewable fuels to be used in powering electric vehicles, with more and more drivers turning to EVs in recent years. 

“We are pretty pleased with what the EPA proposed for 2023 through 2025,” Geoff Cooper, president and CEO of the Renewable Fuel Association, an industry group whose members primarily include ethanol producers, but also represent biogas and biomass producers, told Grist. 

Cooper said that the EPA and the Biden administration recognize that alternative fuels are a growing and needed sector while the country tries to move away from fossil fuels. Setting standards for the next three years will help the biofuels industry grow, said Cooper, who predicted more ethanol, biomass, or biogas producers will emerge in the coming years. 

“I think the administration recognizes that you’re not going to electrify everything overnight,” Cooper said, “and in the interim period, there’s going to be a need for lower-carbon, renewable liquid fuels.”

The controversy

While renewable fuel standards have gained a stamp of approval from industry producers and the federal government, environmental groups see increased investment in ethanol, biomass, and biogas as doubling down on dirty fuel. 

“It’s not encouraging because it continues on the false premise that biofuels, in general, are a helpful pathway to meeting our climate goals,” Brett Hartl, government affairs director for the nonprofit environmental group Center for Biological Diversity

Hartl argues that investing in increased corn production to fuel ethanol will continue harmful agricultural practices that erode soil and dump massive amounts of pesticides on corn crops, which causes increased water pollution and toxic dead zones across the country and the Gulf of Mexico. The United States is the world’s largest producer of corn, with 40 percent of the corn produced used for ethanol. 

study released earlier this year from the Proceedings of the National Academy of Sciences found that when demand for corn goes up, caused by an increase in blending requirements from the RFS, prices increase as well, which causes farmers to add more fertilizer products, created by fossil fuels, to crops. The EPA’s own internal research has also shown greenhouse gas emissions over the next three years will grow with the increase in blending requirements from the federal mandate.

The Center for Biological Diversity has been critical of the EPA’s past support of renewable fuel without a calculation of the total environmental impacts of how the fuel is produced and is currently in legal battles with the federal agency. They’re not alone in their critiques. 

Tarah Heinzen, legal director for Food & Water Watch, a nonprofit environmental watchdog group, said in a statement that an increase in both industrial corn production and biogas, a fuel created from animal and food waste, are not part of a clean energy future. 

“Relying on dirty fuels like factory farm gas and ethanol to clean up our transportation sector will only dig a deeper hole,” Heinzen said. “The EPA should recognize this by reducing, not increasing, the volume requirements for these dirty sources of energy in the Renewable Fuel Standard.” 

Alternative fuels, like biogas and biomass (a fuel created from trees and wood pulp), have gained steam thanks to the ethanol boom of the renewable fuel category. The biogas industry is set to boom thanks to tax incentives created by the Inflation Reduction Act. 

Biomass is a growing industry in the South, with wood pellet mills popping up in recent years. Scientists from across the globe have decried the industry’s suggestion that burning trees for electricity is carbon neutral, with 650 scientists signing a recent letter to denounce the industry’s claims.

The world’s largest producer of wood pellet biomass energy has come under fire from a whistleblower who said the company uses whole trees to create electricity, despite the company’s claims of sustainably harvesting only tree limbs to produce energy. Wood pellet facilities have faced opposition from local governments and federal legislators, with community members in Springfield, Massachusetts successfully blocking a permit for a new biomass facility in November. 

Despite concerns from environmental groups, the forecasted demands of the EPA show that the nation is pushing for more of these fuels in the coming years. This past spring, a bipartisan group of Midwestern governors asked the EPA for a permanent waiver to sell higher blends of ethanol year-round, despite summer-time smog created by the higher blend of renewable fuel.

The post The EPA wants more ‘renewable’ fuel. But what does that actually mean? appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
A potentially revolutionary solar harvester just left the planet https://www.popsci.com/technology/caltech-solar-energy-power-satellite-prototype-launch/ Wed, 04 Jan 2023 18:30:00 +0000 https://www.popsci.com/?p=502984
Concept image of solar power farming satellite orbiting above Earth
A potentially monumental step towards clean global energy just launched yesterday. Caltech Space Solar Power Project

The 110-pound prototype will send back data on three unique energy projects.

The post A potentially revolutionary solar harvester just left the planet appeared first on Popular Science.

]]>
Concept image of solar power farming satellite orbiting above Earth
A potentially monumental step towards clean global energy just launched yesterday. Caltech Space Solar Power Project

Following over a decade of research, including two years of testing origami-inspired components, a small prototype satellite designed to harvest solar energy launched yesterday morning aboard SpaceX’s most recent Falcon 9 rocket launch in Cape Canaveral, Florida. If its initial experiments are successful, arrays similar to Caltech’s Space Solar Power Demonstrator (SSPD) could one day beam essentially endless renewable energy back to Earth via microwave transmitters.

After reading a Popular Science article on the concept in 2011, Caltech Board of Trustees lifetime member Donald Bren approached the school in hopes of making the science fiction idea a reality. The resultant Space Solar Power Project, co-funded by defense manufacturer Northrop Grumman alongside the Bren family’s $100 million endowment, saw its first major milestone completion yesterday via the SSPD arrival above Earth.

[Related: This space-adapted solar panel can fold like origami.]

Over the next few weeks and months, the roughly 110-pound prototype will send back data on three main projects. The Deployable on-Orbit ultraLight Composite Experiment (DOLCE) will test lightweight, foldable structures that can unfurl to collect sunlight. Meanwhile, ALBA (Italian for “dawn”), a collection of 32 different varieties of photovoltaic cells, will determine which could work best in the space’s extremely harsh environment. Finally, the Microwave Array for Power-transfer Low-orbit Experiment (MAPLE) will test microwave transmitters that may one day transmit the collected solar power via wireless electricity.

Sun photo

Speaking yesterday with The Los Angeles Times, Caltech senior researcher Michael Kelzenberg explained that the SSPD’s first tests are not meant to supply Earth with solar space energy just yet. Instead, the team hopes to begin determining which materials, designs, and methods could result in the most efficient and affordable solutions in the future.

[Related: Solar energy company wants to bolt panels directly into the ground.]

It’s hard to overstate just how revolutionary the prospect of space solar energy farming could be for humanity’s power needs. In 2007, a study from the National Space Society estimated that a single, half-mile wide band of photovoltaics orbiting above Earth could hypothetically generate the same amount of energy as the entire planet’s remaining oil supplies over the course of just one year. To do this, Popular Science explained in 2011 that high energy lasers could transmit the solar supply back to Earth at roughly 80 percent efficiency to a global network of receivers, thus providing clean power across the world, even to places with previously unreliable electricity grids.

A multitude of hurdles remain, most notably the vast costs attached to any space engineering project. Still, as Ali Hajimiri, Caltech’s Bren Professor of Electrical Engineering and Medical Engineering and co-director of SSPP, explained in a statement, “no matter what happens, this prototype is a major step forward.” 

The post A potentially revolutionary solar harvester just left the planet appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The wind on Mars may be a viable power source after all https://www.popsci.com/technology/mars-wind-power-turbines-nasa-study/ Mon, 19 Dec 2022 20:00:00 +0000 https://www.popsci.com/?p=500281
Mars Curiosity Rover selfie photo on Martian surface
Picture this view, but with a lot more wind turbines. NASA/JPL-Caltech/MSSS

A new model reveals winds could play a larger role in powering human stays on the Red Planet.

The post The wind on Mars may be a viable power source after all appeared first on Popular Science.

]]>
Mars Curiosity Rover selfie photo on Martian surface
Picture this view, but with a lot more wind turbines. NASA/JPL-Caltech/MSSS

It’s been a big month for Martian winds. Last week, audio recordings revealed the sounds of an actual dust devil traveling across the Red Planet’s surface. On Monday, a team of researchers released a study in Nature Astronomy detailing how some of these very same breezes could help provide energy to future human settlements at a rate far higher than previously believed.

As also reported in earlier rundowns courtesy of New Scientist and Motherboard, past assessments once deemed the winds of Mars too weak to provide a reliable, major source of power production, especially when measured against alternatives like solar and nuclear energy. This stems from the planet’s relatively thin atmosphere—just 1 percent of the density of Earth’s—which generally results in low force winds capable of moving flecks of dust and rock, but not much else. 

[Related: For the first time, humans can hear a dust devil roar across Mars.]

However, a team led by Victoria Hartwick, a postdoctoral fellow at NASA Ames Research Center, used a state-of-the-art Mars climate model adapted from a similar, Earth-focused program to factor in the planet’s landscape, dust levels, solar radiation, and heat energy. After simulating years’ worth of weather and storm patterns, the group found substantial evidence that multiple regions of Mars could provide reliable wind alongside other sources like solar panel arrays. Not only that, but certain areas could generate enough power from wind alone to keep a base up and running.

Particularly suitable locations include crater rims and volcanic highlands, while winds blowing off ice deposits during the northern hemisphere’s winter produce essentially a “sea breeze” effect on the surrounding areas that could also be harvested for energy. In certain locations, average wind power production even came in as much as 3.4 times higher than solar, according to the study. In their findings, Hartwick’s team propose the construction of 160-foot tall turbines in seasonally icy northern regions of places such as Deuteronilus Mensae and Protonilus Mensae, along with similar structures around crater edges and volcano slopes.

[Related: NASA could build a future lunar base from 3D-printed moon-dust bricks.]

Unfortunately, because of traditional turbines’ weight, the additional rocket storage bulk could pose logistical and financial barriers. As such, the group’s paper encourages additional explorations into new construction designs, such as low-volume, lightweight balloon turbines and building from materials harvested on Mars itself—a concept that is already being explored for NASA’s upcoming return to the Moon in anticipation of an eventual permanent lunar base.

The post The wind on Mars may be a viable power source after all appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
A new battery recycling plant could power 1 million EVs per year https://www.popsci.com/technology/south-carolina-ev-battery-recycling-plant/ Thu, 15 Dec 2022 18:15:00 +0000 https://www.popsci.com/?p=499000
Rendering of Redwood Materials' electric vehicle battery recycling campus in South Carolina
A rendering of the finished facility in South Carolina. Redwood Materials

Once completed, Redwood Materials' facility in South Carolina could help greatly bolster domestic EV production.

The post A new battery recycling plant could power 1 million EVs per year appeared first on Popular Science.

]]>
Rendering of Redwood Materials' electric vehicle battery recycling campus in South Carolina
A rendering of the finished facility in South Carolina. Redwood Materials

A 600 acre, 1,500 employee electric vehicle battery recycling facility will soon break ground outside of Charleston, South Carolina, providing a major boost in clearing one of the biggest hurdles currently facing EV adoption. Once completed, Redwood Materials’ Battery Materials Campus will break down end-of-life lithium-ion batteries into their raw materials such as copper, cobalt, and nickel within its 100 percent electric factory facilities. From there, new cathode and anode products can be built and subsequently used once again in future EV manufacturing, thus extending material lifespans while lowering overall vehicle costs for consumers.

According to Redwood’s estimates, the campus will eventually be able to provide 100 GWh in recycled components per year—enough to annually power an estimated 1 million EVs—and can eventually scale upwards as demand grows. The startup already has a similar facility in Nevada, which announced its own expansion earlier this year.

[Related: Why solid state batteries are the next frontier for EV makers.]

Redwood’s newest project is located in what is becoming known as America’s Battery Belt—a region stretching from the Midwest to the Deep South increasingly focused on the production of electric vehicles and EV components. Green energy and EV advocates argue that shifting production stateside is crucial for economics, the environment, and human rights. Currently, the vast majority of EV parts such as the rare earth minerals needed for batteries are mined overseas in countries like China, resulting in massive ethical and ecological concerns. As Engadget notes, the company alleges its methods lowers battery component production’s CO2 emissions by around 80 percent when compared to current standard Asian supply chain outputs.

Charleston’s geographic location is a strategic choice, given its ports. As CEO JB Straubel explained in a recent interview with The Wall Street Journal, there currently aren’t enough recyclable EV materials to meet industry demands, and importation is still a necessary step in the process. Straubel estimates that between 40 and 60 percent of its Redwood Materials’ South Carolina facility products will be made from recycled materials.

[Related: You throw out 44 pounds of electronic waste a year. Here’s how to keep it out of the dump.]

One of the biggest hurdles in electric vehicle adoption is the e-waste generated from depleted “end-of-life” lithium-ion batteries. Thankfully, industry pushes such as Redwoods’ latest venture furthers our capability of breaking down these power sources and recycling the bulk of what would otherwise be relegated as potentially harmful trash. Construction on South Carolina’s Battery Materials Campus is set to begin early next year, with an eye to begin initial recycling processes by the end of 2023.

The post A new battery recycling plant could power 1 million EVs per year appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The hard truth of building clean solar farms https://www.popsci.com/environment/solar-farm-construction-epa-water-violations/ Thu, 15 Dec 2022 17:45:00 +0000 https://www.popsci.com/?p=499028
Sediment running into a river in Alabama from a solar farm construction site. Aerial view.
In September 2018, sediment from the construction of a nearby solar farm, AL Solar, flowed into Chattahoochee River in Alabama. It was one of four solar farms that were recently involved in construction permit violations and stormwater mismanagement issues. Henry M. Jacobs, Chattahoochee Riverkeeper

The construction of four solar farms in the US violated the Clean Water Act, showcasing the challenges of building a clean power grid.

The post The hard truth of building clean solar farms appeared first on Popular Science.

]]>
Sediment running into a river in Alabama from a solar farm construction site. Aerial view.
In September 2018, sediment from the construction of a nearby solar farm, AL Solar, flowed into Chattahoochee River in Alabama. It was one of four solar farms that were recently involved in construction permit violations and stormwater mismanagement issues. Henry M. Jacobs, Chattahoochee Riverkeeper

Last month, the US Environmental Protection Agency and Department of Justice announced more than a million dollars in penalties against companies for polluting local waterways. The culprits? Four solar farms in Illinois, Alabama, and Idaho.

“The development of solar energy is a key component of [the Biden] administration’s efforts to combat climate change,” said Larry Starfield, an administrator at the Environmental Protection Agency (EPA), in a press release on November 14. “These settlements send an important message to the site owners of solar farm projects that these facilities must be planned and built-in compliance with all environmental laws.”

Each of the large-scale solar projects, which shared a common contractor, violated construction permits and mismanaged storm water controls, causing harmful buildup of sediment in waterways. As private companies race to build renewable capability, the EPA’s case with the four solar farms illustrates a central challenge: While gleaning energy from the sun might be a panacea to overconsumption of fossil fuels, building a clean power grid that can harness solar energy is often more complicated.

[Related: Solar power got cheap. So why aren’t we using it more?]

Experts say a path to net zero emissions will almost certainly require solar energy—and that calls for a hard look at the challenges these sweeping facilities face with clean construction and more ethical production of panels.

Building and recycling solar panels

Most solar panels used in the US today start out as sand. Scientists purify the grains into almost pure crystalline silicon, but the process requires a large amount of electricity. Almost 80 percent of a solar panel’s carbon footprint can come from this purification process alone, according to Annick Anctil, an assistant professor of civil and environmental engineering at Michigan State University.

“Where that electricity is coming from is really important,” Anctil says. “If you’re making solar panels in a place where electricity uses coal or natural gas, that makes your solar panels not as green as if you’re able to produce it from solar energy.”

Solar panels are built to last about 30 years. At the end of their lifecycle, installers can either throw them into a landfill or recycle them, but there isn’t much infrastructure for reusing the materials in the panels since the industry is new. 

“We need to plan and choose panels considering not just the electricity production but the full lifecycle.”

— Annick Anctil, Michigan State University

Government agencies, organizations, research groups, and companies worldwide have begun developing technologies and creating recycling programs to break down solar panels and materials. The US-based Solar Energy Industries Association, for instance, has been creating a network to help consumers identify where they can recycle their solar panels and installers find a place to purchase recycled modules, Anctil explains. The association reports it’s processed over 4 million pounds of solar panels and related equipment since its recycling program launched in 2016. Luckily, if panels wind up in landfills, the glass and silicon materials are not toxic, Anctil says. (She does note that the metal frame needs to be broken down, too.)

There isn’t comprehensive data about how many solar panels are recycled versus thrown away in the US. Large-scale production of solar panels only began about 10 years ago, so it’s likely that most haven’t reached the end of their life cycle yet.

Grading land for solar farms

Solar panels are easier and cheaper to install on leveled ground, which often requires companies to mow down trees and local vegetation. Leveling, or grading, the land can lead to soil erosion and eventually sediment runoff, where storms force eroded soil to travel downhill, sometimes into waterways. Too much soil in bodies of water can disrupt local ecosystems, hurt the plants and animals that live in them, and damage drinking water treatment systems.

In the recent settlement, the EPA and Department of Justice charged the four solar farms with violating the Clean Water Act by failing to prepare for the sediment runoff created during construction. The agencies alleged that two of the farms in Idaho and Alabama even discharged sediment illegally into nearby waterways.

Dustin Mulvaney, an environmental studies professor at San José State University in California whose research focuses on solar energy commodity chains, says these violations appeared to be “really manageable problems” that the companies should have had under control. “Where [solar farms often] go wrong is they assume they understand the landscape,” Mulvaney says. But when building starts, “they run into endangered species conflicts, stormwater issues, and air pollution issues.”

Farmland filled with solar panels on a foggy day
The US Department of Agriculture helped support the installation of an 896-panel solar array in an unfarmable section of a hay farm in Pennsylvania. This solar farm was not a part of the recent violations. USDA

Grading the land for solar farms “is like any other road construction project,” Anctil says. “It’s just unfortunate that some companies in the construction [process] just didn’t care or weren’t careful.” The runoff from building these recent solar farms could have been avoided by, say, planting vegetation to catch some of the soil and water.

Anctil and Mulvaney say that regulations can help prevent these kinds of water and pollution issues from construction projects. While the bidding process for projects varies from state to state, stronger government assessments could ensure that solar companies preserve the environments they’re otherwise capitalizing on.

Since farmland is already flat and offers room to scale up, it’s been a prime candidate for solar projects—with energy companies incentivizing farmers with financial returns. But converting this land into solar farms also presents cultural and wildlife issues. Farmers may be reluctant to see their land converted from rows of crops to rows of synthetic panels. 

While the construction process has the potential to cause significant land disturbance, solar farms do offer some immediate benefits to farmers and the environment, David Murray, director of solar policy for American Clean Power, wrote in a statement to Popular Science. In some setups, growers can plant crops between or alongside the panels. “Ecosystem services are an understated benefit of large-scale solar sites and once operational, solar facilities yield less nutrient runoff and require far less pesticide and herbicides compared to row crop agriculture,” Murray writes. 

Accountability from start to finish

The four solar farms that violated the Clean Water Act are all subsidiaries of international finance and investment companies. But Mulvaney argues that what’s even worse are inexperienced solar developers that build a single arm and then soon disband. He’s seen “quite a few projects” handed to these temporary companies.

“When you have these entities that do one-offs and then vaporize, there’s absolutely no accountability at all,” he says. “That’s a structural problem.”

[Related: Dams show promise for sustainable food systems, but we should tread lightly]

While public and private groups might feel the urgency in building renewable energy systems, it’s important to be cautious about how the systems themselves are built and sourced, Anctil says.

“The problem is people tend to just look at how much electricity is going to be produced,” she explains. “We need to plan and choose panels considering not just the electricity production but the full lifecycle.”

A more environmentally conscious process is needed from start to finish. Sand should be legally and ethically mined, Anctil says. Developers also need to consider how to build sustainable  solar arrays that minimize the impacts on the local habitat. Better recycling plans should be in place for the solar panels once they reach the end of their lives. And like with any other major construction project, renewable energy companies should take heed of state and federal environmental regulations.

“I’m not trying to kill solar,” Anctil says. “It’s making sure that in 5 or 10 years from now, we don’t find out there’s a new environmental disaster.” 

The post The hard truth of building clean solar farms appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Solar energy company wants to bolt panels directly into the ground https://www.popsci.com/technology/solar-panels-ground/ Wed, 14 Dec 2022 18:30:00 +0000 https://www.popsci.com/?p=498634
Erthos in-ground solar panel farm array surrounded by fence
Erthos claims it could reduce solar array costs by 20 percent. Erthos

Erthos hopes to do away with traditional solar panel farm designs by taking things minimal.

The post Solar energy company wants to bolt panels directly into the ground appeared first on Popular Science.

]]>
Erthos in-ground solar panel farm array surrounded by fence
Erthos claims it could reduce solar array costs by 20 percent. Erthos

Solar power grid installation costs have dropped precipitously over the past decade, with arrays averaging nearly 90 percent cheaper in 2021 than in 2010. This is due to a number of key advancements in scalability, materials, and rapidly improving technology—but nothing lasts forever. Industry analysts predict solar power’s cost-benefit ratio is largely stabilizing, and may even backslide as global markets and supply chains constrict.

This also means that for solar power to continue to transition society towards green, renewable energy systems, designers will need to get creative on how to keep costs down while maintaining efficacy.

One potential solution courtesy of the solar installation startup, Erthos, is to embrace a hyper-minimalist approach to their panel arrays. The company recently announced a partnership with Industrial Sun for a radically designed, 100 megawatt (mW) utility-scale solar farm in Texas that does away with traditional elevated, racked setups in favor of installing panels directly across the ground. If successful, it could revolutionize the solar industry—and ease the concerns of understandably critical skeptics.

[Related: These powerful solar panels are as thin as a human hair.]

Picture a standard solar panel setup: the photovoltaic cells framed and propped up above the ground using metal frames and protective glass cases. Currently, the designs required to physically encase and support solar panel farms comprise around 20 percent of their total price tag. If engineers were to do away with them entirely, then overall costs could dramatically decrease while simultaneously cutting down on additional resource mining, production, and consumption. That’s exactly what Erthos aims to do, although there are a few reasons why this has never been tried at scale.

As Canary Media reports, solar experts have pointed towards issues such as the lack of airflow around a ground-installation scenario, which could hypothetically increase humidity and therefore attract organic materials like mold and fungus. Then there’s the ability to access broken panels in the middle of arrays without stepping on or damaging its surrounding siblings. Add ground instability and everyday varmints moseying around the areas, and there could be a recipe for failure.

[Related: This new floating solar farm follows the sun like a flower.]

By removing aluminum and glass racks and trackers, the company asserts it can construct a project in half the time on one-third of the land using 70 percent less cable and trenching. Proper protective fencing will keep critters and plant life away from the paneling, and small, mobile robots will safely traverse across the arrays’ surfaces for cleaning and minor repairs.

No one at Erthos is arguing there won’t be further opportunities for optimization and improvement, but as the company’s chief marketing and product officer, Daniel Flanigan, posited last year, one could look at traditional solar farming methods as the truly inefficient and burdensome approach compared to in-ground alternatives. Traditional methods, he adds, require triple the land, trenching, and cable requirements, large amounts of steel and other natural resources, driving piles into the ground, and all the additional mechanical complexities and issues that come with that.

Research estimates that wind and solar power sources need to comprise at least 40 percent of global energy by 2030 in order to realistically stem the worst effects of climate change—up from the estimated 10 percent currently used today. With such a giant shift, ongoing efforts to diminish the energy sector’s effects on local wildlife are crucial.

The post Solar energy company wants to bolt panels directly into the ground appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Artemis I’s solar panels harvested a lot more energy than expected https://www.popsci.com/science/artemis-solar-panels/ Wed, 14 Dec 2022 11:00:00 +0000 https://www.popsci.com/?p=498330
NASA Orion spacecraft with unfolded solar panels on wings as it circles the moon. The Earth is far off in the background.
Orion's all-new solar array allows two modes of maneuverability, which could be key to powering long-distance spaceflights in the future. NASA

Tests during the recent lunar mission proved that a specially designed solar array could help power long-distance space flights.

The post Artemis I’s solar panels harvested a lot more energy than expected appeared first on Popular Science.

]]>
NASA Orion spacecraft with unfolded solar panels on wings as it circles the moon. The Earth is far off in the background.
Orion's all-new solar array allows two modes of maneuverability, which could be key to powering long-distance spaceflights in the future. NASA

An essential part of any space mission is power. If a spacecraft runs out of energy, the communications go down, the craft becomes unsteerable, and life support systems shut off—a scenario that’s the stuff of sci-fi nightmares. 

For a spacecraft, the sun is a particularly vital supplier of energy, and the recent Artemis I mission proved just how powerful it can be to harness solar energy in space. During the nearly month-long flight around the moon, NASA tested all functions of the uncrewed spacecraft, including the Orion crew capsule’s innovative solar panels. The vehicle’s solar panels exceeded expectations, proving themselves to be a key technology for the future of human space exploration.

“Initial results show that the arrays are providing significantly more power than expected,” says Philippe Berthe, an engineer who manages the Orion European Service Module Project Project at the European Space Agency (ESA).

[Related: Welcome back to Earth, Orion]

Engineers from ESA and the European company Airbus collaborated with NASA and Lockheed Martin to build the Orion spacecraft, the component that separates from the launch rockets and will ferry astronauts to their destination and back during subsequent Artemis flights. The Paris-based agency’s main contribution to Orion is the European Service Module, which houses the solar panels and other critical systems. 

Orion has four wings, each nearly the length of a British double-decker bus, that unfolded 18 minutes into its journey while still in low-Earth orbit. Each of these wings holds three gallium arsenide solar panels, a particularly efficient and durable type of solar cell made for space. Together, the four wings generate “the equivalent of two households’” worth of power, according to Berthe. 

This type of solar cell is commonly used by military and research satellites. What’s innovative about Orion’s panels is how they’re maneuvered. “Usually solar arrays have only one axis of rotation so that they can follow the sun,” says Berthe. The ones on the capsule, however, can move in two directions, folding up to withstand the pressures of spaceflight and the heat of Orion’s powerful thrusters.

ESA solar panel array or NASA Orion's wings as it flies over Earth. Illustration.
The full 12-panel array seen in an artist’s rendition. NASA/ESA/ATG Medialab

During Artemis I’s 26-day mission, the combined NASA and ESA team tested all aspects of the solar panels, including their ability to rotate, unfold, and produce power. According to Berthe, the panels worked so well they provided 15 percent more power than what engineers had projected. That has consequences for future Artemis missions: “Either the size of the solar arrays could be reduced,” he says, “or they could provide more power to Orion.” Smaller solar arrays could reduce the cost of missions, but more power could allow for additional capabilities onboard the crewed spacecraft.

These nimble solar panels are also equipped with cameras on their wingtips, which Matthias Gronowski, Airbus Chief Engineer for the European Service Module, likens to a “selfie stick” for the mission. These cameras have provided incredible images of the spacecraft as it cruised between the moon and Earth, and can even help the mission engineers inspect the spacecraft for damage. Because the arrays are maneuverable, they act like robotic arms, providing a “chance to inspect the whole vehicle,” says Gronowski.

[Related: These powerful solar panels are as thin as human hair]

Artemis I is NASA’s first step in testing the technology needed to return humans to the moon, and eventually venture further to Mars using the Orion crew capsule. The new lunar program plans to carry humans beyond low-Earth orbit, where the International Space Station resides, for the first time since the 1970s, including the first woman and first person of color to set foot on the moon.

The solar panels are one part of the pioneering technology of Artemis and Orion, and this first test flight proves they are a reliable technology for distant space travel. Moveable arrays like those on Artemis I will be key for future missions that require even more powerful engines, allowing the panels to shift into a protective configuration as the spacecraft speeds up. 

“We are very proud to be part of the program,” says Gronowski. “And we are very proud to be basically bringing humans back to the moon.”

The post Artemis I’s solar panels harvested a lot more energy than expected appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
These powerful solar panels are as thin as a human hair https://www.popsci.com/technology/solar-panel-fabric/ Fri, 09 Dec 2022 18:00:00 +0000 https://www.popsci.com/?p=496860
Researcher in protective suit, gloves, and hairnet holding up ultrathin solar panel
The new solar cells could turn almost any surface into a power generator. Melanie Gonick, MIT

The panels generate 18 times more power-per-kilogram than traditional solar technology.

The post These powerful solar panels are as thin as a human hair appeared first on Popular Science.

]]>
Researcher in protective suit, gloves, and hairnet holding up ultrathin solar panel
The new solar cells could turn almost any surface into a power generator. Melanie Gonick, MIT

Six years ago, an MIT engineering team at the university’s Organic and Nanostructured Electronics Laboratory (ONE Lab) developed a solar cell so thin it could rest atop a soap bubble. While impressive, the manufacturing requirements and cost unfortunately prohibited any viable large-scale plans. This week, however, ONE Lab revealed a new, similarly ultra-thin solar cell material that is one-hundredth the weight of conventional panels, while also potentially generating 18 times more power-per-kilogram compared to traditional solar technology. Not only that, but its production methods show promising potential for scalability and major manufacturing.

As a press release from MIT explains, powerful solar cells’ fragile natures require thick glass and aluminum encasements for protection, thus limiting their versatility and implementation opportunities. Using semiconducting inks printed onto material thinner than a single strand of human hair, the team was able to subsequently glue the panels onto a layer of Dyneema, a protective, ultra-lightweight composite fabric weighing only 13 grams-per-square meter. The resultant microns-thin sheet could then be laminated atop a variety of surfaces and materials—think tent exteriors to generate power during disaster relief efforts, or drone wings to extend their potential flight times.

[Related: This new floating solar farm follows the sun like a flower.]

Despite its incredibly miniature design, the new material packs a lot of storage potential. Speaking with MIT, Mayuran Saravanapavanantham, one of the team’s paper co-authors and an electrical engineering and computer science graduate student, offered a standard home rooftop solar array for comparison. “A typical rooftop solar installation in Massachusetts is about 8,000 watts,” Saravanapavanantham explained. “To generate that same amount of power, our fabric photovoltaics would only add about 20 kilograms (44 pounds) to the roof of a house.”

Durability is also a key component for any viable solar cell array, a feature the ONE Lab team demonstrated in its new design by reportedly rolling and unrolling the fabric over 500 times, which only resulted in a less than 10 percent loss in potential power generation.

[Related: A tiny, foldable solar panel is going to space.]

Unfortunately, MIT’s impressive solar fabric isn’t quite ready to sew into your clothes just yet. The team is still searching for the right material to encase the product—because the cells are made from carbon-based organic material, exposure to the natural moisture and oxygen in the air would result in a quick decline in capabilities.

“We are working to remove as much of the non-solar-active material as possible while still retaining the form factor and performance of these ultralight and flexible solar structures,” Jeremiah Mwaura, one of the paper’s additional co-authors, explained to MIT. Once that problem is addressed, the solar fabric could find its way onto countless surfaces to add much-needed green, renewable power to daily life.

The post These powerful solar panels are as thin as a human hair appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The best home innovations of 2022 https://www.popsci.com/technology/best-home-innovations-2022/ Fri, 02 Dec 2022 19:00:00 +0000 https://www.popsci.com/?p=491015
The hai smart Bluetooth showerhead next to text that says "Best of What's New, 2022, Home."
It's the Best of What's New. hai

A system that recycles water in your home, paint that won’t drip, and an easy-to-install smart showerhead are the Best of What’s New.

The post The best home innovations of 2022 appeared first on Popular Science.

]]>
The hai smart Bluetooth showerhead next to text that says "Best of What's New, 2022, Home."
It's the Best of What's New. hai

We may earn revenue from the products available on this page and participate in affiliate programs. Learn more ›

Renters, homeowners, and DIY-ers don’t always have the time, money, or skills to accomplish the home improvement tasks on their lists. We get it. Fortunately, one of the benefits of living in a time of rapid innovation is that technology can easily step in where our brains, brawn, and bank accounts fall short. This year, you can upgrade your living space with an easy-install smart showerhead, use spray paint that doesn’t drip, or even consider the most compact in-home water recycling system we’ve ever seen—and that’s just the tip of the screw.

Looking for the complete list of 100 winners? Check it out here.

Grand Award Winner: Smart water recycling by Hydraloop: A compact, easy-to-use gray water recycling system

Hydraloop

Learn More

Gray water is the stuff that spirals down your shower and sink drains, and it’s mostly clean, usable H2O that goes to immediate waste. Recycling this wastewater is doable, but the required systems are frequently large, maintenance-intensive, and involve a complicated jumble of pipes and valves. Hydraloop founder Arthur Valkieser changed that by redesigning existing water treatment technology to eliminate filters, and shrinking his device into something that looks a lot more like a modern household appliance. As water fills the Hydraloop’s tank, sediment sinks to the bottom and lighter grime like soap and hair floats to the top, where it foams up and over as waste. Then, a torrent of air bubbles grabs any free-floating solids and removes them, too. The gray water then enters an aerobic bioreactor where live bacteria feast on any remaining organic material and soap. Every four hours after that, UV-C light disinfects the stored water to kill any remaining bacteria, and the non-potable (but sanitized) water is ready to go back into your washing machine, toilet tank, or garden.

Timberline Solar shingles by GAF Energy: Roofing and renewable energy in one

GAF Energy

Learn More

Installing traditional rack-mounted solar panels requires drilling through your existing roof, creating holes that can lead to leaks and water damage if they’re improperly sealed. GAF Energy’s Timberline Solar shingles, however, nail down just like regular asphalt roofing, thanks to a flexible thermoplastic polymer backing. With that supporting a durable photovoltaic surface, they’ll hang tight in the rain, hail, and winds up to 130 mph. Even brighter: These shingles have serious curb appeal and you won’t have to choose between spending on a roof replacement or investing in solar—you can do both at the same time.

3-in-1 Digital Laser Measurer by Dremel: Precise measurements of uneven surfaces

Dremel

Learn More

Anyone who’s tried to measure an odd-shaped object knows the struggle of fumbling with a flexible tape, laboring through numerous calculations, or painstakingly determining the length of a string that once followed the contours of the piece in question. Dremel’s 3-in-1 digital laser measurer makes this job easier with a snap-on wheel you can roll for up to 65 feet along any surface. On top of that, it’s got a laser measurer that’s accurate within an eighth of an inch, and a 5-foot tape for all your in-home measuring needs.

757 PowerHouse by Anker: A longer-lasting portable power station

Whether you need portable outdoor power or are trying to sustain your home through a blackout, the lithium iron phosphate cells inside the Anker 757 PowerHouse will keep your devices juiced for more than 3,000 cycles. That means if you dispense and refill its full 1,500-watt output once a day, this picnic-cooler-sized hub will last for more than eight years. It’s got one car outlet, two USB-C ports, four USB-A connections, and six standard household AC plugs. Bonus: Its flat top allows it to double as a sturdy off-grid table.

Glidden Max-Flex Spray Paint by PPG: Drip-proof spray paint

Few things are more disheartening to a DIY-er than completing a project, shaking up a can of spray paint, and then seeing your first coat start dripping all over your masterpiece. Applying a smooth sheen of color takes practice, and PPG seems to understand that not everyone has the time to learn the fine points of pigment application. The company’s Glidden Max-Flex all-surface paint eschews the traditional conical spray for a unique wide-fan pattern that not only refuses to drip, but dries in minutes. The lacquer-based formulation works on wood, glass, and metal and is available in 16 matte shades ranging from “In the Buff” to “Black Elegance.”

M18 18V Cordless Tire Inflator by Milwaukee: Faster, cooler roadside assistance

Milwaukee

Learn More

It goes without saying that cordless inflators produce lots of air, but they also generate a bunch of heat. That’s a problem when your pump conks out after 5 minutes and you have to wait for it to cool down before you can keep filling your tires. Not only will Milwaukee’s M18 cordless tire inflator push out 1.41 standard cubic feet of air per minute—making it the fastest 18-volt cordless tire inflator around—but its internal fan will keep it chugging along for up to 20 minutes. You might not even need to use it that long, either: It’ll top off a 33-inch light duty truck tire in less than a minute.

Smart Showerhead by hai: No plumber necessary

Smart showerheads frequently require skilled experts to install, and some even feature components that are built into the wall of your bathroom. That’s not accessible for the everyday homeowner. You don’t need tools or special skills to hook up Hai’s smart Bluetooth showerhead, though. Just unscrew the old head, twist on the new one, connect the app, and you’ve got immediate control over both temperature and flow. Use the adjustable spray slider on the head to go from a high-pressure stream to a light mist, and choose your preferred heat level from the app. Plus, customizable LED lights will let you know when you’ve reached your self-imposed limit, saving water.

The post The best home innovations of 2022 appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Energy-efficient heat pumps will be required for all new homes in Washington https://www.popsci.com/environment/heat-pumps-washington-state/ Tue, 29 Nov 2022 22:00:00 +0000 https://www.popsci.com/?p=492929
These changes encourage building electrification.
These changes encourage building electrification. Pexels

Earlier legislation requires heat pumps in new commercial buildings—now homes will also be included.

The post Energy-efficient heat pumps will be required for all new homes in Washington appeared first on Popular Science.

]]>
These changes encourage building electrification.
These changes encourage building electrification. Pexels

Nearly every new home and commercial building in Washington state will be required to install a heat pump in under a year. This follows the Climate Commitment Act signed into law in the state last year, which aims to limit pollution to meet greenhouse gas (GHG) reduction goals. 

Back in April, the Washington State Building Code Council (SBCC) voted to require the installation of heat pumps for new commercial and multi-family buildings. The council recently voted in favor of requiring it for new residential construction as well, both of which are expected to go into effect in July 2023. 

These updates to the state’s commercial and residential codes encourage building electrification, which is a major step in phasing out the use of fossil fuels for heating and cooling.

A heat pump can ideally replace both a heater and an air conditioner because the technology allows it to absorb heat energy and move it from one place to another. Compared to standard gas heating equipment like furnaces, air-source heat pumps are more energy-efficient because they use electricity to transfer heat from outdoors to indoors when heating and vice versa for cooling. 

[Related: How heat pumps can help fight global warming.]

“Since they move heat around rather than generating it from burning something, they are much more efficient than combustion heating,” says Jonathan J. Buonocore, assistant professor in the Department of Environmental Health at the Boston University School of Public Health. “By replacing a natural gas furnace, oil heater, wood stove, or some other combustion source, you’re benefiting the environment by replacing a source of emissions of greenhouse gasses or other air pollution.”

A 2021 study published in Environmental Research Letters found that 70 percent of US households could reduce climate damages caused by CO2 emissions related to the house’s energy consumption by simply installing a heat pump. For instance, if all single-family homes used heat pumps, residential carbon emissions may be reduced by 32 percent. The adoption of heat pumps may also reduce financial costs for about 32 percent of households.

“In new construction, installing a heat pump can be cheaper than extending a natural gas connection, installing a furnace, and installing an air conditioner,” says Parth Vaishnav, assistant professor of sustainable systems at the University of Michigan’s School for Environment and Sustainability who was involved in the study.

About 88 percent of single-family, new construction homes in Washington already use some sort of electric primary space heating in 2018, according to a report from the Northwest Energy Efficiency Alliance. With the High-Efficiency Electric Home Rebate Act (HEEHRA), low-income households who want to move away from combustion heating may be able to get a rebate covering the cost of a heat pump installation up to $8,000.

In a recent Scientific Reports study, Buonocore and his co-authors analyzed building energy data and identified the ‘Falcon Curve,’ the monthly profile of US energy consumption. Peak total energy consumption occurred in December and January for heating and July and August for cooling.

[Related: Energy costs hit low-income Americans the hardest.]

Policymakers can anticipate this coming electricity demand by putting more non-combustion renewable sources on the grid to supply electricity during the winter, says Buonocore. The installation of heat pumps would be an efficient electrification technology for building decarbonization.

Without energy storage or other ways to manage the grid load, meeting the winter peak in electricity demand with renewable energy would require a 28-fold increase in January wind generation or a 303-fold increase in January solar energy generation. However, if buildings were to have efficient technologies like air source or ground source heat pumps, only 4.5 times more winter wind generation or 36 times more solar energy would be needed to meet the winter peak, ideally flattening the Falcon Curve to an extent.

“Heat pumps make it possible to efficiently use electricity for heating,” says Vaishnav. “If that electricity is produced cleanly—by wind, solar, or nuclear power—then we can eliminate the CO2 emissions that come from burning fossil fuel in a furnace.”

The post Energy-efficient heat pumps will be required for all new homes in Washington appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
This new floating solar farm follows the sun like a flower https://www.popsci.com/technology/floating-solar-panels-follow-sun/ Fri, 18 Nov 2022 21:00:00 +0000 https://www.popsci.com/?p=488839
Solaris Float Proteus floating solar panel array on body of water
Just soaking up the rays. SolarisFloat

SolarisFloat's Proteus solar panel array not only floats on water, but slowly turns to track the sun across the sky.

The post This new floating solar farm follows the sun like a flower appeared first on Popular Science.

]]>
Solaris Float Proteus floating solar panel array on body of water
Just soaking up the rays. SolarisFloat

A new solar power farm prototype bobbing atop the waters of a large lake in the southwest Netherlands is stalking the sun’s movements to make the most out of its energy capabilities. As BBC News explained yesterday, a company called SolarisFloat‘s artificial island—dubbed Proteus after the Greek sea god—is a 38-meter-wide circular system comprised of 180 interconnected modular panels that not only produces around 70 kilowatts of peak power (kWp), but makes the most of its position by slowly following the sun’s trajectory as it arcs across the sky.

[Related: A tiny, foldable solar panel is going to space.]

Much like flowers shifting position as the day progresses, Proteus’ onboard technology allows its double-sided panels to turn in tandem with the sun’s movement in order to consistently generate as much solar power as possible. Because of this, SolarisFloat estimates Proteus can generate as much as 40 percent more energy than nonmoving arrays on land. Another benefit comes from its ability to maintain lower temperatures than land-based counterparts thanks to the water-cooled air underneath it.

There are a few limitations to a sun-tracking solar farm, however. For one thing, location matters—Proteus’ onboard tracking systems won’t mean much anywhere near the Equator, where the panels would stay virtually horizontal the entire day. Additionally, the setup would need to be installed in areas with comparatively weaker tidal currents and fair weather.

[Related: ‘Workhorse of batteries’ could give California tribe’s new clean-energy microgrid a jolt.]

Still, projects like Proteus can potentially help overcome one of the chief barriers to widespread solar power adoption—the comparatively massive amounts of space that panel arrays require to harvest their energy. One study from Leiden University in The Netherlands even estimates that solar farms need somewhere between 40-50 times the area of coal plants, and 90-100 times the land needed by the gas providers. Land value will only increase as the world continues transitioning towards completely renewable energy, meaning it’s likely that solar projects will compete against other vital usages like sustainable farming and forest seeding. Situating solar farms atop otherwise unused bodies of water could be a relatively simple, effective way to allow space for all of the required projects needed to stave off the worst effects of climate change.

The post This new floating solar farm follows the sun like a flower appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
What new mining projects could mean for Alaskan salmon https://www.popsci.com/environment/alaskan-salmon-mining/ Sun, 13 Nov 2022 00:00:00 +0000 https://www.popsci.com/?p=486361
Underwater view of coho salmon (oncorhynchus kisutch) swimming in river, Juneau, Alaska, USA.
Underwater view of coho salmon (oncorhynchus kisutch) swimming in river, Juneau, Alaska, USA. Getty Images

Active, proposed, and exploratory projects in Alaska and British Columbia may affect key salmon watersheds.

The post What new mining projects could mean for Alaskan salmon appeared first on Popular Science.

]]>
Underwater view of coho salmon (oncorhynchus kisutch) swimming in river, Juneau, Alaska, USA.
Underwater view of coho salmon (oncorhynchus kisutch) swimming in river, Juneau, Alaska, USA. Getty Images

This article was originally featured on Undark.

Wild Alaskan salmon are a gold standard for American seafood. The long journey from the river to the ocean and back builds the muscle mass that gives the fish their distinct texture and flavor, and the clean rivers of the north produce seafood with very low levels of mercury and other contaminants. Indigenous communities have been harvesting salmon in Northwestern North America for more than 10,000 years and some still depend on subsistence fishing for survival. In southeastern Alaska, salmon fishing and processing adds an annual total of about $70 million to the local economy.

But 21st-century salmon face many stressors, including habit loss, climate change, and overfishing. As a result, salmon populations are declining across the United States. The fish still thrive in some parts of Alaska, but local residents and scientists are increasingly concerned about an additional stressor: the mining industry. Active mines, proposed mines, and dozens of exploratory projects span the transboundary region of southeastern Alaska and British Columbia, which includes three major salmon-bearing rivers. One of these proposed mines, the Kerr-Sulphurets-Mitchell project in Canada, will extract ore from what is reportedly the largest undeveloped gold-copper deposit in the world.

For decades, scientists have been trying to understand the impact of mining on salmonids, a family that includes salmon, trout, and other closely related fish. In July, the journal Science Advances published a review study evaluating more than 100 research papers and documents, concluding that the earlier research has underestimated the impacts of mining operations on Pacific salmonids. Mining activities are of special concern today, the authors wrote, because demand for metals is rising as manufacturers seek raw materials for low-carbon technologies like electric car batteries.

Even under normal circumstances, mining can release contaminants like heavy metals into nearby watersheds, threatening the health of salmon. And mine tailings — the slurry of silt, fine sand, clay, and water that’s left behind after ore is extracted — need to be carefully stored beyond the life of the mine. Without proper environmental mitigation, scientists say, current and proposed mining activities could have devastating effects on Alaskan salmon and their watersheds.

In interviews with Undark, several mining representatives underscored the industry’s efforts to keep watersheds free of contaminants. But many scientists and locals remain skeptical, and they worry about losing the region’s salmon. The nonprofit Salmon Beyond Borders was created to protect transboundary rivers and ways of life. “Wild salmon are at the center of my life,” said Heather Hardcastle, a campaign adviser for the organization, “as they are at the center of most people’s lives in this region.”


Northwestern North America represents a convergence of natural resources, wrote the July paper’s 20-plus authors, most of whom are affiliated with the region’s universities, First Nations, or environmental nonprofits. Northwestern North America holds substantial reserves of coal and metals. It is also home to “some of the most productive and least disturbed salmonid habitat remaining on Earth,” the authors wrote. These fish are unique for their large home ranges and for their tendency to use all of the accessible parts of the watershed. For these and other reasons, it can be difficult to assess and mitigate the risks of mining.

The review was comprehensive, analyzing not only peer-reviewed studies, but also government databases and reports, and industry disclosure documents and technical materials. The results were sobering: Mining operations often fail to meet their own water quality goals, the review found. Further, few studies have compared the predicted impacts of mining with the industry’s actual impacts. Cumulative effects of multiple mines and other stressors are often underestimated. Mitigation strategies aren’t always based on proven technology, and they rarely consider the effects of climate change in years to come.

Lead researcher Chris Sergeant said the July paper is the first of its kind to comprehensively review and summarize the impact of mining on salmon and provide guidance on how to improve the science that supports mining policy. The scale of the review allowed researchers to see a big picture, which can be difficult to visualize based on individual datasets, especially when the data comes from the mining companies themselves.

Northwestern North America holds substantial reserves of coal and metals. It is also home to “some of the most productive and least disturbed salmonid habitat remaining on Earth.”

“It’s nearly impossible with the data we’re given by mining operations these days to do a kind of pre-project assessment of risk,” Sergeant said. “The data quality is so non-transparent and not done systematically.” Sergeant also said he wasn’t surprised by his paper’s findings, given that there are so many individual examples of how mining operations can affect watersheds. Having those examples all together in one place, though, makes the extent of the problem clearer.

Jonathan Moore, a professor at Simon Fraser University in British Columbia who worked on the July review, noted that salmon also help support the overall health of local watersheds. More than 100 species are believed to have some kind of relationship with salmon, whether direct or indirect. Trout eat salmon eggs and young salmon, for example, and bears eat the spawning adults. When salmon die, their bodies contribute nutrients like nitrogen and phosphorus to the watershed and the forests that grow nearby.

The ecological impact of these nutrients is sometimes visible to the human eye. A 2021 study found that the “greenness” of vegetation along the lower Adams River in British Columbia increased in the summers following a productive sockeye salmon run. Another study found that the presence of dead salmon in spawning grounds influenced the growth rate of Sitka spruce trees not just close to the riverbank but also farther into the forest, where researchers said “bear trails and assumed urine deposition were prevalent.”


Environmental activists and scientists are wary of new mining projects, in part, because mining disasters are still happening, even though modern infrastructure is supposed to be robust enough to prevent them. During a 2014 dam failure at the Mount Polley Mine in British Columbia, for example, 32 million cubic yards of wastewater and mine tailings spilled into a nearby lake. From there, the mine waste traveled down a creek and into a second lake, which supports one of the region’s most important salmon habitats.

The mining company, Imperial Metals, maintains that the tailings from the Mount Polley spill did not cause largescale environmental damage. The tailings contained very little pyrite, a mineral that can generate sulfuric acid when exposed to air and water, wrote C.D. Anglin, who worked as the company’s chief scientific officer in the aftermath of the Mount Polley accident, in an email to Undark. Sulfuric acid is one of the most environmentally concerning consequences of mining. When the compound enters a watershed, it doesn’t just threaten the health and survival of fish and other animals, it can also dissolve other heavy metals like lead and mercury from rock it contacts. But, Anglin wrote, “the Mount Polley tailings are considered chemically benign.”

Still, a 2022 study found that the dam failure did have environmental consequences. The study, which was not included in the July review, was led by Gregory Pyle, a researcher at the University of Lethbridge in Alberta, Canada. Pyle and his colleagues took water, sediment, and invertebrate samples from sites impacted by the spill and from a nearby waterbody, Bootjack Lake, that was not impacted by the spill. In the areas most affected by the spill, Pyle’s team found elevated copper levels in the sediment, as well as high concentrations of copper in the bodies of invertebrates living in those areas. Notably, the researchers also found elevated copper levels in Bootjack Lake, which suggests that the environmental impact of the Mount Polley mine predates the spill itself.

Anglin said the study’s results are misleading. “While the copper levels are slightly higher than in some of the organisms in unimpacted areas,” she wrote, “they are not at a level of environmental concern.”

Pyle disagrees. In an interview with Undark, he pointed to a follow-up study in which his team exposed freshwater scuds (a shrimplike mollusk) to contaminated and uncontaminated water and sediment collected four years after the Mount Polley spill. “When they were in contact with the sediments for as little as 14 days,” he said, “it impaired their growth and survival.” The results of Pyle’s study have implications for salmon since scuds and other invertebrates are an important food source for these fish.

Copper can also build up in the bodies of salmon, as well as their prey, impacting their growth and survival. Studies have found that even sub-lethal copper levels can harm salmon’s olfactory system, which may make it harder for them to avoid predators and orient themselves in their habitat. “Copper has these really insidious effects in terms of salmon’s ability to navigate,” said Moore. “Salmon might not be able to find their way home, for example, in a system that has excess copper.”

Even when contaminants are taken out of the equation, scientists say, the sheer volume of material entering the watershed during a spill like the one at Mount Polley can have physical consequences. “These big disasters like Mount Polley, they transform these systems,” said Moore. For example, the slurry of fine sediment and waste material can cover the gravel where salmon would otherwise lay their eggs, making it useless as spawning habitat.

The lingering effects of past mining have activists and scientists concerned about new projects like the proposed Kerr-Sulphurets-Mitchell mine, which is expected to begin construction in the summer of 2026. Hardcastle said Salmon Beyond Borders wants the region to take a precautionary approach to new mining projects.

“What’s the point otherwise of trying to decarbonize and get to a clean energy future,” she asks, “if all we’re doing is swapping the big oil and the fossil fuel industry for big mining?”


Christopher Mebane, assistant director for hydrologic studies at the U.S. Geological Survey, studies metals, toxicity, and mining and jokingly describes himself as “a dirty water biologist.” He called the July study, in which he was not involved, “a fair assessment” of the problems that mining activities can create for salmonids. “I can’t find a single misstatement or error,” he said. “But you know, if this were written by a group of mining engineers, it would have a very different tone and probably conclusions.”

Indeed, mining industry representatives say the mistakes of the past won’t be repeated. “Mines with tailing storage facilities are required by law to implement new design and operational criteria using best available technology,” said Michael Goehring, president and CEO of the Mining Association of British Columbia, a trade group. And Brent Murphy, senior vice president of environmental affairs at Seabridge Gold, the company that will operate the proposed KSM mine, said the KSM tailings management facility won’t drain into Alaskan waters. Although the mine itself will be located in a watershed that drains into a transboundary river, Murphy said the tailings facility will drain only into Canadian waters and does not require water treatment.Salmon are believed to have a relationship, direct or indirect, with more than 100 different species. In Alaska, brown bears famously fish for adult salmon as they swim upstream to spawn. Visual: RooM via Getty Images

Murphy added that the tailings facility will be in a confining valley, closed off by two large dams. “We’re containing all of the potential acid-generating material, which is only 10 percent of the total volume of the tailings produced, within a lined facility,” he said. That part of the facility will be surrounded by more than 1.8 miles of compacted sandy material. The design, Murphy said, was implemented to address the concerns of local First Nations.

To satisfy agency and community concerns over the long term, mining operations may also propose water treatment plans that span centuries. Seabridge Gold said water treatment will continue for 200 years after the KSM mine closes, though Murphy told Undark that the water at the site is already naturally contaminated with copper, iron, and selenium and won’t be further contaminated by mine operations.

Christopher Sergeant, who led the July review, said he’s skeptical. “I don’t know of any successful examples of anyone treating water for 200 years,” he said. “And my understanding of corporate structure is that there’s not really a motivation once the project is not creating profit anymore. That’s a big concern of mine: Who is going to be on the hook for making sure that that water is treated in what’s basically perpetuity?”

Goehring said the cost of ongoing water treatment is paid for upfront. British Colombia already holds 2.3 billion Canadian dollars ($1.7 billion ) from the mining industry for the express purpose of containing mine waste, he said. This ensures that after the KSM mine closes, he added, “water treatment, if required, will continue to take place.”

“Who is going to be on the hook for making sure that that water is treated in what’s basically perpetuity?” said Sergeant.

Even so, the future effects of climate change could threaten infrastructure at KSM and other mines. “A lot of the calculations that are made for engineering are based on what the current environment looks like,” said Sergeant, adding that there’s really no way to predict how different the environment will be 10 or 20 years into the life of a mine. Destructive weather events are becoming more common, he noted, and they “aren’t necessarily considered in engineering designs.”

For now, environmental groups like Salmon Beyond Borders aim to convince agencies and policymakers to put a pause on new and expanding mines in shared watersheds until Canadian law can be revised to include provisions for downstream stakeholders. More significantly, Salmon Beyond Borders said it also wants a permanent ban on tailings dams near transboundary rivers. But because mining is so lucrative, permanent bans may not be practical or possible.

Moore said the July paper showcases the key challenges to protecting salmon populations in a region touched by the mining industry. He hopes the research points toward “a productive path forward,” he added, in which the mining industry can coexist with thriving salmon systems and the communities that depend on them.


UPDATE: A previous version of this piece incorrectly stated that the KSM tailings management facility will be located in a watershed that drains into a transboundary river and that wastewater will be piped to a treatment facility miles away. While the mine itself is located in such a watershed, the tailings management facility drains only into Canadian waters and does not require water treatment. The piece also originally referred to Heather Hardcastle as the campaign director for Salmon Without Borders. She is a campaign adviser.

The post What new mining projects could mean for Alaskan salmon appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Global carbon emissions will peak in 2025, international agency estimates https://www.popsci.com/environment/carbon-emissions-peak-fossil-fuel/ Thu, 27 Oct 2022 18:30:00 +0000 https://www.popsci.com/?p=481398
Solar panels
Solar panels generate energy from the sun. Kelly / Pexels

Global demand for fossil fuels also shows a peak or plateau for the very first time.

The post Global carbon emissions will peak in 2025, international agency estimates appeared first on Popular Science.

]]>
Solar panels
Solar panels generate energy from the sun. Kelly / Pexels

The International Energy Agency’s (IEA) World Energy Outlook 2022 claims that the world is at a “historic turning point” in regards to transitioning away from fossil fuels. The report says that while the war in Ukraine led to a global energy crisis, the shortage is spurring long-lasting changes that will speed up the transition to more sustainable and secure energy.

Following Russia’s invasion of Ukraine in February, an energy crisis spread around the world as natural gas and gasoline prices surged. Since then, governments around the world have been working to find additional sources of energy to make up for the deficits due to the war. Early on, some worried that this fear could hamper efforts to transition to renewable energy, and the United States and the United Kingdom both pledged to encourage more fossil fuel extraction to ease prices.

However, according to a statement from IEA executive director Faith Birol, the current energy crisis, “is in fact going to accelerate the clean energy transition.” Birol also added that, “We are approaching to the end of the golden age of gas,” in a press conference following the report’s publication.

[Related: What a key natural-gas pipeline has to do with the Russia-Ukraine crisis.]

The report also finds that commitments to clean energy contributed to the run-up in energy prices and more renewable energy was were correlated with lower electricity prices. Additionally, more more energy efficient homes and electrified heat have been an important financial buffer for some customers, but it is not enough. “The heaviest burden is falling on poorer households where a larger share of income is spent on energy,” the report says.

The planned investments in green energy in response to the crisis means that government policies would lead to demand for polluting fossil fuels peaking in 2025, according to the report. The IEA referenced the European Union’s emissions reduction package, the US Inflation Reduction Act, Japan’s Green Transformation (GX) Program, and the ambitious clean energy targets in India and China, and others as notable responses to the energy crisis.

“Energy markets and policies have changed as a result of Russia’s invasion of Ukraine, not just for the time being, but for decades to come,” said Birol, in a statement. “Even with today’s policy settings, the energy world is shifting dramatically before our eyes. Government responses around the world promise to make this a historic and definitive turning point towards a cleaner, more affordable and more secure energy system.”

[Related: Europe’s energy crisis could shut down the Large Hadron Collider.]

This increased clean energy investment will cost Russia $1 trillion in lost fossil fuel revenues by 2030, according to the report. Previously among the world’s largest exporters of fossil fuels, Russia would have a, “much diminished role in international energy affairs” as the world’s reliance on burning methane gas for power falls, Birol added.

The report also makes the case that cleaner technologies are now more economically feasible and are part of creating stronger energy security in the future. However, more financial investment in clean energy is still needed to meet these goals. In order to reach net zero emissions by 2050, more than $4 trillion in investment is needed. It also highlights the need to attract more investors to the clean energy sector.

“Amid the major changes taking place, a new energy security paradigm is needed to ensure reliability and affordability while reducing emissions,” Birol said. “And as the world moves on from today’s energy crisis, it needs to avoid new vulnerabilities arising from high and volatile critical mineral prices or highly concentrated clean energy supply chains.”

The post Global carbon emissions will peak in 2025, international agency estimates appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Global CO2 emissions grew by less than a percent this year thanks to renewables https://www.popsci.com/technology/renewable-energy-global-emissions/ Fri, 21 Oct 2022 19:00:00 +0000 https://www.popsci.com/?p=480091
Close up of solar panel in green field at sunrise
Some welcome good news for a change. Deposit Photos

The International Energy Agency's new report signals a major reversal from last year's staggering increase.

The post Global CO2 emissions grew by less than a percent this year thanks to renewables appeared first on Popular Science.

]]>
Close up of solar panel in green field at sunrise
Some welcome good news for a change. Deposit Photos

Global carbon emissions rose in 2021, bouncing back up an estimated six percent following months of slowed emission during the COVID-19 shutdowns. It was a sobering reminder of just how much work remained ahead of us to if we are to ensure a sustainable future for ourselves, but according to a new report from the International Energy Agency released earlier this week, this year’s numbers are thankfully much lower. The latest data analyzed by IEA experts indicates global CO2 emissions are on course to increase by nearly 300 million tons in 2022 compared to last year’s levels, putting the total amount around 33.8 billion tons. Any increase isn’t exactly great, but it’s a far cry from the almost 2 billion ton leap made between 2021 and the onset of the COVID-19 pandemic.

The key to this heartening alteration is, perhaps unsurprisingly, the rapid rise in renewable energy sources. The IEA notes that, were it not for “major deployments” of renewable energy tech alongside increased demand for electric vehicles (EVs), we would have likely seen almost triple that number. This even figures the ongoing geopolitical crisis in Ukraine, which has had dramatic effects on the global supply of natural gas and oil. “Even though the energy crisis sparked by Russia’s invasion of Ukraine has propped up global coal demand in 2022 by making natural gas far more expensive, the relatively small increase in coal emissions has been considerably outweighed by the expansion of renewables,” notes the IEA in its summary.

[Related: This space-adapted solar panel can fold like origami.]

The report notes that solar and wind systems led the rise in renewable energy generation in 2022, producing over 700 terawatt-hours(TWh)—the largest annual rise ever measured—accounting for two-thirds of all renewable power. Additionally, “despite the challenging situation that hydropower has faced in several regions due to droughts this year, global hydropower output is up year-on-year, contributing over one-fifth of the expected growth in renewable power.”

Of course, it rarely is all good news when it comes to our fight against climate change. A minuscule rise in emissions is certainly wonderful to hear, but humanity needs to massively reduce our total amount if we’re to stave off the worst effects of eco-catastrophe. A recent study showed that, were we to continue on pace at our current trajectory, nearly 90 percent of all marine life could be wiped out by the end of the century. Still, seeing the measurable effects of increased renewable energies is certainly encouraging news, to say the least. With any luck, we’ll see similarly low numbers—if not even lower—this time next year.

The post Global CO2 emissions grew by less than a percent this year thanks to renewables appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
This space-adapted solar panel can fold like origami https://www.popsci.com/technology/space-solar-panel-origami/ Thu, 20 Oct 2022 14:30:00 +0000 https://www.popsci.com/?p=479620
Caltech solar power satellite prototype on space station table with earth horizon in window background
Researchers have spent nearly a decade working on the project. Caltech

Caltech researchers are preparing a tiny solar panel satellite system that can beam energy back to Earth.

The post This space-adapted solar panel can fold like origami appeared first on Popular Science.

]]>
Caltech solar power satellite prototype on space station table with earth horizon in window background
Researchers have spent nearly a decade working on the project. Caltech

Caltech researchers inspired by Japanese origami design theory are preparing to launch a small satellite prototype into orbit in December. The roughly 3.9 square-inch prototype is capable of harnessing and subsequently wirelessly transmitting solar energy back to Earth. If successful, the nearly ten-year, multimillion dollar project partially backed by aerospace and defense manufacturer Northrop Grumman alongside a $100 million endowment from Donald and Brigitte Bren could help steer the renewable energy sector in a radical new direction, one that could hypothetically even provide clean electricity to regions with no access to reliable power infrastructures.

According to Caltech’s recent interview with two of the project leads, the satellite combines three main areas of advances:

  • The development of ultra lightweight, high-efficiency photovoltaic cells “with power-to-weight ratios some 50-100 times greater than even the solar panels currently used on the ISS and modern satellites.”
  • Creating similarly lightweight and low-cost tech with the ability to convert direct current power into radio frequency power, then transmit that power back to Earth in the form of safe microwave radiation.
  • Perfecting a thin, foldable, and lightweight structure that can not only support all these components, but steer the radio frequency outputs as needed.

[Related: This fabric doubles as 1,200 solar panels.]

Renewables photo

To achieve these impressive milestones, Caltech scientists looked to one of the oldest art forms for step-by-step direction, so to speak. “By using novel folding techniques, inspired by origami, we are able to significantly reduce the dimensions of a giant spacecraft for launch,” Sergio Pellegrino, a project co-leader and the Joyce and Kent Kresa Professor of Aerospace and Civil Engineering, said in a recent interview. “The packaging is so tight as to be essentially free of any voids.”

The eventual goal is to launch into orbit hundreds of thousands of solar panels—each individual piece a 4-by-4 inch square weighing less than a tenth of an ounce. Once situated above the planet, these panels would each subsequently unfurl to form a satellite constellation measuring roughly 3.5 square miles of sunlight-gathering surface.

[Related: Are solar panels headed for space?]

Despite the numerous logistical and financial hurdles, there is increasing interest in pursuing solar renewable energy via satellite systems, primarily for a simple reason—beyond Earth’s atmosphere, a solar array hypothetically has access to the Sun’s rays 24/7, not to mention the energy potential in space is about eight times better per square meter, per a writeup from New Atlas. That said, the overall difficulty and prohibited costs may make something like Caltech’s project beyond the possibility of widespread deployment. As New Atlas adds, space solar energy costs could range between $1-2 per kWh, compared to less than $0.17/kWh for US electricity. A similar alternative could be utilizing solar panels here on Earth, then ostensibly reverse beaming their energy up to satellites for global distribution. In any case, Caltech’s numerous advancements in lightweight and flexible panel systems represent major steps forward for innovative renewable energy solutions to our climate crisis.

Update 10/24/22: This article has been updated to more accurately cite the project’s funding.

The post This space-adapted solar panel can fold like origami appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The Brilliant 10: The top up-and-coming minds in science https://www.popsci.com/science/brilliant-10-2022/ Wed, 19 Oct 2022 14:00:00 +0000 https://www.popsci.com/?p=478906
brilliant-10-2022
Popular Science

These scientists and engineers are taking on some of medicine, chemistry, and society’s biggest challenges—and succeeding.

The post The Brilliant 10: The top up-and-coming minds in science appeared first on Popular Science.

]]>
brilliant-10-2022
Popular Science

There’s a phrase that rings loudly in the heads of Popular Science editors any time we bring together a new Brilliant 10 class: “They’ve only just begun.” Our annual list of early-career scientists and engineers is as much a celebration of what our honorees have already accomplished as it is a forecast for what they’ll do next. To find the brightest innovators of today, we embarked on a nationwide search, vetting hundreds of researchers across a range of institutions and disciplines. The collective work of this year’s class sets the stage for a healthier, safer, more efficient, and more equitable future—one that’s already taking shape today. 

Turning food waste into filters

Kandis-Leslie-Abdul-Aziz-brilliant-10
Kandis Leslie Abdul-Aziz: Assistant Professor, Chemical and Environmental Engineering; University of California, Riverside University of California, Riverside

After earning a bachelor’s in chemistry in 2007, Kandis Leslie Abdul-Aziz took a position at an oil refinery along the Schuykill River in South Philadelphia. Part of her job was to analyze refined petroleum products, like acetone and phenol, that other industrial manufacturers might buy. She was also tasked with testing the refinery’s wastewater—which, she couldn’t help but notice, flowed out right next to a residential neighborhood. “Literally, if you looked out past the plant,” she says, “you could see houses close by.”

That was more than a decade before an explosive fire forced the refinery to close and spurred an unprecedented cleanup effort. But the experience got Abdul-Aziz thinking about the life cycle of chemical byproducts and their potential impacts on human health. She went back to school for a PhD in chemistry, and her lab at the University of California, Riverside, now focuses on giving problematic waste streams—from plastic trash to greenhouse gases—a second life.

To start, Abdul-Aziz decided to investigate whether she could convert corn stover into something with economic value. The stalks, leaves, tassels, and husks left over from harvest add up to America’s most copious agricultural waste product. Much of it is left to rot on the ground, releasing methane and other greenhouse gases. A small percentage does get salvaged and converted into biofuels, but the payoff usually isn’t worth the effort.

Abdul-Aziz and her colleagues set out to test multiple processes for turning the refuse into activated carbon, the charcoal-like substance that’s used as a filter everywhere from smokestacks to your home Brita pitcher. Her analysis, published in 2021, looks at the activated carbon produced by various methods—from charring stover in an industrial furnace to dousing it in caustic substances—and the molecular properties that affect which contaminants it can soak up. The ultimate aim: Tell her what kind of chemicals you want to clean up, and she’ll create a carbon filter that can do the trick.

Abdul-Aziz has since applied to patent her customizable process, and is looking into other sources of detritus and use cases. Wastewater treatment companies have expressed interest, she says, in using her tools on environmental toxins such as PFAS—the stubborn, hormone-disrupting “forever chemicals” ubiquitous in household products and prone to contaminating drinking water. At the same time, she has also demonstrated that she can derive activated carbon from citrus peels, and is now investigating whether she can do the same with plastic trash.

She’s also exploring an even bigger swing. Earlier this year, the National Science Foundation awarded her half a million dollars to develop absorbent materials to capture carbon dioxide emissions and help convert them back into useful materials such as polymers and fuels. Abdul-Aziz wants to identify practical recycling processes that don’t require overhauling existing infrastructure. “For us it’s about trying to develop realistic solutions for these sustainability problems so they can actually be implemented,” she explains. It’s these small steps that she believes will move us toward a truly circular economy—one where materials can be reused many times. And with any luck, her innovations will help buffer the worst impacts of the very petrochemicals that inspired her quest.—Mara Grunbaum

Harnessing the power of immunotherapy for breast cancer

Sangeetha-Reddy-brilliant-10
Sangeetha Reddy: Assistant Professor, Internal Medicine; University of Texas Southwestern Medical Center Courtesy Sangeetha Reddy

In recent decades, immunotherapy has been a game-changer in cancer treatment. Drugs that augment the body’s natural immune response against malignant tumors have dramatically improved survival rates for patients with diseases like lymphoma, lung cancer, and metastatic melanoma. But the method has been far less successful in breast cancers—particularly the most aggressive ones. Sangeetha Reddy, a physician-scientist at The University of Texas Southwestern Medical Center, is trying to change that. “We could do better,” she says.  

Reddy works with patients with triple-negative breast cancers, so-called because the malignancies don’t have any of the three markers scientists have historically targeted with anti-cancer drugs. Even with aggressive chemotherapy and surgery, the prognosis for these patients—who account for about 15 percent of breast cancer diagnoses worldwide—is relatively poor. Immunotherapies, in particular, often fail because breast cancers tend to hobble the body’s dendritic cells, the roving molecular spies that sweep up pieces of suspicious material and carry them back to immune system headquarters to introduce as the new enemy. When the body doesn’t know what it’s supposed to be attacking, boosting its power is of little use.

Reddy is therefore trying to figure out how to restore dendritic cell function. As a physician-scientist, she uses a relatively new approach that she describes as “bedside to bench and back.” She treats patients in her clinic, conducts in vitro and mouse experiments in her lab, and designs and manages her own clinical trials. This physician-scientist method enables a positive feedback loop: Reddy can analyze tumors excised from her own patients to assess whether treatments are working. Then she can test out new drugs on those same cancer cells. When she identifies a promising tactic, she can design clinical trials to test things like safety, dosage, and timing. At every step, she can find something in what she learns to incorporate back into her research or her patients’ care.

This cyclical strategy has led Reddy to the combination of three drugs that she’s currently testing against triple-negative breast cancer: Flt3-ligand, a protein that stimulates the proliferation of dendritic cells; a chemical that helps activate these cells and others; and anthracycline, a standard chemotherapy agent. In mice, this triad kept breast cancer tumors at least 50% smaller than chemotherapy alone. “A couple of our mice, we actually cured them,” says Reddy. A Phase-1 clinical trial investigating the safety and efficacy of the regimen in people began enrolling patients earlier this year.

Though it can take years to work out all the kinks in a new cancer treatment and clear the hurdles on the way to FDA approval, Reddy’s multi-pronged strategy should streamline this process as much as possible. Doing so will allow her to enable a transformation she’s been eyeing since she started to specialize in cancer treatment more than eight years ago. As a fellow at the MD Anderson Cancer Center, Reddy worked with melanoma patients in clinical trials of immunotherapy, which gave her a firsthand look at the treatment’s emerging potential. “We were taking patients who would have passed away within months and giving them ten years,” she says. “Just that hope that we can get there with [triple-negative breast cancer] led me to this path.”—M.G.

Decarbonizing the internet

Mohammad-Hajiesmaili-brilliant-10
Mohammad Hajiesmaili: Assistant Professor, Manning College of Information and Computer Sciences; University of Massachusetts Amherst Zinj Guo

The internet as we know it is inextricable from the cloud—the ethereal space through which all e-mails, Zooms, and Instagram posts pass. As many of us well-know, however, this nebulous concept is anchored to the Earth by sprawling warehouses that crunch and store data in remote places. Their energy demands are enormous and increasing exponentially: One model predicts they will use up to 13 percent of the world’s power by 2030 compared to just 3 percent in 2010. Gains in computing efficiency have helped matters, says University of Massachusetts Amherst assistant professor of informatics and computer science Mohammad Hajiesmaili, but those improvements do little to reduce the centers’ impact on the environment.

“If the power supply is coming from fuel sources, it’s not carbon optimized,” explains Hajiesmaili. But renewable power is sporadic, given its reliance on sun and wind, and geographically constrained, since it’s only harvested in certain places. This is the puzzle Hajiesmaili is working to solve: How can data centers run on carbon-free energy 24/7?

The answer involves designing systems that organize their energy use around a zero-carbon goal. Several approaches are in the works. The simplest uses schemes that schedule computing tasks to coincide with the availability of renewable energy. But that fix can’t work on its own given the unpredictability of bright sunlight and gusts of wind—and the fact that the cloud doesn’t sleep. Another strategy is “geographical load balancing,” which involves moving tasks from one data center to another based on local access to clean power. It, also, has drawbacks: Transferring data from one place to another still requires energy, Hajiesmaili notes, and, “if you’re not careful, this overhead might be substantial.”

An ideal solution, and the focal point of much of his work these days, involves equipping data centers with batteries that store renewable energy as a reserve to tap, say, at night. “Whenever the carbon intensity of the grid is high,” he says, “you can just discharge from the battery instead of consuming local high-carbon energy sources.” Even though batteries that are big enough, or cheap enough, to fully power data centers don’t exist yet, Hajiesmaili is already developing algorithms to control when future devices will charge and discharge—using carbon optimization as their guiding principle. This “carbon-aware” battery use is just one of many ways in which Hajiesmaili thinks cloud design should be overhauled; ultimately, the entire system must shift to put carbon use front and center. 

Most big technology companies have pledged to become carbon-neutral—or negative, in Microsoft’s case—in the coming decades. Historically, they have pursued those goals by buying controversial offset credits, but interest in carbon-intelligent computing is mounting. Google, for one, already uses geographical load balancing and is continuing to fine-tune it with Hajiesmaili’s input, and cloud-computer company VMWare has its own carbon-cutting projects in the works. In his view, though, the emerging field of computational decarbonization has applications far beyond the internet. All aspects of society—agriculture, transportation, housing—could someday optimize their usage through the same approach. “It’s just the beginning,” he says. “It’s going to be huge.”—Yasmin Tayag

Predicting how wildlife will adapt to climate change

Rachael-Bay-brilliant-10
Rachael Bay: Assistant Professor, Evolution and Ecology; University of California, Davis David Slipher/UC Davis

Evolutionary biologists typically think about changes that took place in the past, and on the scale of thousands and millions of years. Meanwhile, conservation biologists tend to focus on the needs of present wildlife populations. In a warming world, where more than 10,000 species already face increased risk of extinction, those disciplines leave a crucial gap. We don’t know which animals will be able to adjust, how quickly they can do it, and how people can best support them.

Answers to these questions are often based on crude generalizations rather than solid data. Rachael Bay, an evolutionary biologist at the University of California, Davis, has developed an approach that could help make specific predictions about how at-risk species might evolve over the coming decades. “Injecting evolution into conservation questions is really quite novel,” she says.

The central premise of Bay’s work addresses a common blind spot. Conjectures about how climate change will affect a particular creature often assume that all of them will respond similarly to their changing habitat. In fact, she points out, it’s exactly the variation between individuals that determines if and how a species will be able to survive.

Take the reef-building corals she looked at for her PhD research: Thought to be one of the organisms most vulnerable to extinction as a result of warming oceans, some already live in hotter waters than others. Bay identified genes associated with heat tolerance in the coral Acropora hyacinthus and measured the prevalence of that DNA in populations in cooler waters; from there, she was able to model how natural selection would change the gene pool under various climate-change scenarios. Her findings, published in 2017 in Science Advances, made a splash. The data indicated that the cooler-water corals can, in fact, adapt to warming if global carbon emissions start declining by 2050; if they don’t, or keep accelerating as they have been, the outlook becomes grim.

Bay has continued her work on corals and other marine organisms, but she has also applied her method to terrestrial animals. In 2017, work she conducted with UCLA colleague Kristen Ruegg bolstered the case for keeping a Southwestern subspecies of the willow flycatcher on the US endangered list. Though the species as a whole is abundant, with a breeding range that spans most of the US and southwestern Canada, the subgroup that occupies southern California, Arizona, and New Mexico has struggled with habitat loss. The scientists demonstrated not only that the desert-dwelling birds were genetically distinct enough to merit their own listing, but also that individuals in that population have unique genes that are likely associated with their ability to survive temperatures that regularly top 100°F. Protecting this small subgroup—less than one-tenth of a percent of the total population—could help the entire species persist.

That kind of specific, forward-looking decision is exactly what Bay hopes to enable for other wildlife facing an uncertain future. Other recent work has focused on how yellow warblers, Anna’s hummingbirds, and a coastal Pacific snail called the owl limpet might shift their ranges in response to climate change. “The pie-in-the-sky goal is to make evolutionary predictions that can be used in management,” she says.—M.G.

Building an immune system from scratch

John-Blazeck-brilliant-10
John Blazeck: Assistant Professor, School of Chemical and Biomolecular Engineering; Georgia Institute of Technology Courtesy John Blazeck

When a new pathogen invades, the immune system unleashes a suite of antibodies into the bloodstream—the bodily equivalent of throwing spaghetti at the wall to see what sticks. While most of those proteins will do an okay job of neutralizing the trespasser, a valuable few will zero in with deadly accuracy. The faster scientists can identify and replicate those killers, the better we’ll get at beating disease. Case in point: Antibody therapy helped many at-risk patients sick with COVID-19. The big challenge in studying the body’s natural response, however, is that in order to do so, people have to get sick.

John Blazeck, of Georgia Tech’s School of Chemical and Biomedical Engineering, is developing a workaround. Instead of using the human body as a “bioreactor” for antibodies, he wants to use microbes. That way, the repertoire that fires off in response to a pathogen can be studied in, say, a flask or a chip. The dream of a “synthetic immune system” has kicked around biotech circles for the last two decades, but Blazeck’s work is ushering it into reality. “We can have a million different microbes, making a million different antibodies that would mimic what a person would be doing,” he says.

His career began in synthetic biology, a field that involves sticking genes into microbes to make them do new things. Specifically, he tried to get them to pump out biofuels. His interest in advancing health, however, led him to use his expertise to fight disease in 2013, when he injected microbes with the human genes known to produce antibodies. Recreating the immune system in this way is a colossal undertaking. “The catch is that the process has been optimized for millions of years, so it’s very hard to make it happen,” he explains.

Nevertheless, his team has made foundational progress that could underpin the future of this research. Recently, they figured out how to efficiently mutate antibody DNA after it’s been inserted into microbes, which will help them select antibodies that bind more tightly to a given pathogen. The process is meant to mimic how the immune system uses its B cells—the body’s antibody factories—to self-select the proteins that generate the strongest defenses.

Building a synthetic immune system is only half of what Blazeck is doing to supercharge immunity. The rest builds on his postdoctoral research on engineering a means to thwart cancer cells’ defenses. Tumors secrete molecules that shut down immune cells trying to get in their way. Blazeck—with his former advisor George Georgiou, of the University of Texas, Austin—found an enzyme that can render those molecules harmless, allowing the immune system to do its thing. Ikena Oncology, a company specializing in precision cancer treatment licensed the enzyme, one of the first of its kind, in 2015. Both aspects of Blazeck’s work are at the forefront of burgeoning new fields, and he’s been heartened by the early response. “I hope that people continue to appreciate the value of trying to engineer immunity, and how it can contribute to understanding how to fight disease—and also directly fight disease,” he says.—Y.T.

Spying our future in near-asteroid flybys

Daniella-Mendoza-DellaGiustina-brilliant-10
Daniella Mendoza DellaGiustina: Assistant Professor; Principal Investigator, OSIRIS-APEX; University of Arizona Courtesy Daniella Mendoza DellaGiustina

The whole world will be watching when a 1,000-foot-wide asteroid called Apophis swoops by Earth in mid-April 2029. But Daniella Mendoza DellaGiustina, a planetary scientist at the University of Arizona, will be looking more closely than anyone else. Her gaze will be trained on what the space rock reveals about our past—and what it means for our future. “It’s going to captivate the world,” she says. In 2022, NASA named her principal investigator of the OSIRIS-APEX mission, which will send the OSIRIS-ReX spacecraft that sampled the asteroid Bennu in 2020 chasing after Apophis.

DellaGiustina wasn’t always interested in space, but as a “cerebral young person” gazing into the famously clear skies of the desert Southwest, she had a lot of big questions: Why are we here? How did we get here? A community college class in astronomy piqued her interest. Then, a university course on meteorites led to an undergraduate research position with Dante Lauretta, who later became the principal investigator of OSIRIS-ReX. DellaGiustina knew “very early on” that the research environment was right for her: “You’re actively pushing the boundary of human knowledge.” A master’s degree in computational physics led her to field work on the ice sheets of Alaska, which resemble those on other planets. Eventually, she returned to the University of Arizona, where completed a PhD in geosciences (seismology) while working on image processing for OSIRIS-ReX.

A belief that asteroids hold answers to the big questions of her youth drives her to understand them from the inside out. “They really represent the leftovers of solar system formation,” she says. “It’s kind of like finding an ancient relic.” So-called carbonaceous asteroids like Ryugu and Europa—rich in volatile substances, including ice—may explain how water and the amino acids that jumpstarted life once made their way to Earth. They may also offer a glimpse of the future: “Near-Earth asteroids, especially, hold tremendous potential for resource utilization,” DellaGiustina says, “but one might also take us out someday.”

Apophis is not considered dangerous, but it will swing by at roughly one-tenth the distance between Earth and the Moon. “If we ever have an incoming threat to our own planet, we need to understand ‘what’s the structure of this thing?’ so that we can properly mitigate against it,” she says. With DellaGiustina at the helm, the OSIRIS-APEX project will use this once-in-7,500-years chance to study how close encounters with planets can change an asteroid. Earth’s tidal pull, for example, is expected to “squeeze” Apophis—a tug DellaGiustina hopes to measure via a seismometer dropped on the surface.

Lauretta, who has worked with DellaGiustina since she was an undergraduate, jumped at the chance to nominate her to lead the next phase of the OSIRIS mission. She had always been keen on designing experiments—Lauretta seriously considered her proposal to equip OSIRIS-ReX with a dosimeter to measure the radiation risk for future asteroid-hopping astronauts. Her “decisive leadership is rare and critical for a program of this size,” he adds. On the off chance that an errant space rock ever threatens Earth, it’ll be a comfort to know she’s at work behind the scenes.—Y.T.

Making transit sustainable and equitable

Samitha-Samaranayake-brilliant-10
Samitha Samaranayake: Assistant Professor, School of Civil and Environmental Engineering; Cornell University Charissa King-O’Brien

Picture this: It’s Tuesday morning, and you’re planning to ride the train to work. Walking to the station takes 25 minutes, so you hop on the local bus. Today, though, the bus is delayed, and doesn’t reach the station in time to catch the train. You wait for the next one. You’re late for work.

If your boss is a stickler and you rely on public transit, a missed connection can be make or break. These are the kinds of problems that Samitha Samaranayake, a computer-scientist-turned-civil-engineer at Cornell University, has made it his mission to solve. He designs algorithms to help varied modes of mass transit work more seamlessly together—and help city planners make changes that benefit those who need them most.

Before Cornell, Samaranayake spent several years studying app-based ridesharing, including the potential of on-demand autonomous car fleets. In 2017, he co-authored an influential paper showing that companies like Uber and Lyft could reduce their contribution to urban congestion if cars were dispatched and shared efficiently. But he quickly became disillusioned with entirely car-centric solutions. “It’s convenient for people who can afford it,” he says, but when it comes to moving city-dwellers efficiently and accessibly, mass transit can’t be beat.

So Samaranayake began investigating how new technology can best be incorporated into city transit systems—and possibly solve some of their most-common pitfalls. Take the “last mile problem:” the challenge of transporting people from transit hubs in dense urban areas to the less-centralized places that they need to go—like their homes in far-out neighborhoods. If these connections aren’t quick and reliable, people may not use them. And if people aren’t using a neighborhood bus line or other last-mile service, says Samaranayake, a transit agency might cut it rather than run more buses, making the problem worse.

That’s where the technology developed by ride-sharing companies becomes useful, says Samaranayake. In recent years, he’s designed algorithms to integrate real-time data from public transit with the software used to dispatch on-demand vehicles. This could let transit authorities send cars to pick up groups of people, then deliver them to a commuter hub in time to make their connections.

This approach is known as “microtransit,” and after pandemic-related delays, a test project with King County Metro in Seattle launched earlier this year. It uses app-based rideshare vans to shuttle shift workers and others who live in the outskirts of the city to and from the regional rail line. Although it’s too early to measure success, Samaranayake has seen enthusiastic uptake from some commuters without many good alternatives.

That points toward his other goal: finding better ways to quantify how equitably transit resources are apportioned, so that city planners can ultimately design new systems that reach more people more efficiently. This social-justice element helps motivate Samaranayake to keep working on mass transit, even though funding has typically been more abundant for flashier technology like self-driving cars.

That could be changing: In recent years, Samaranayake and his collaborators have received nearly $5 million from the US Department of Energy and the National Science Foundation to pursue their vision. “Transit is not ‘cool’ from a research perspective,” Samaranayake admits. “But it’s the only path forward to a transportation system that is environmentally sustainable and equitable, in my view.”—M.G.

Finding the roots of neurodegenerative disease

Chantell-Evans-brilliant-10
Chantell Evans: Assistant Professor, Cell Biology; Duke University Jeff Fusco / HHMI

Anyone who’s taken high school biology knows that mitochondria are the powerhouses of cells. While it’s true that these organelles are responsible for converting sugars into energy, they also have many less-appreciated jobs, including generating heat, storing and transporting calcium, and regulating cell growth and death. In recent decades, researchers have linked the breakdown of these functions to the development of certain cancers and heart disease.

When it comes to diseases like dementia, Parkinson’s, and ALS, however, Duke University cell biologist Chantell Evans thinks it’s time to look specifically at neurons. “Mitochondria are implicated in almost every neurodegenerative disease,” says Evans. By unraveling how neurons deal with malfunctioning mitochondria, her work could open up possibilities for treating many currently incurable conditions.

Evans’ work focuses on understanding a process called mitophagy—how cells deal with dead or malfunctioning mitochondria—in neurons. There are plenty of reasons to believe brain cells might manage their organelles in unique ways: For one, they don’t divide and replenish themselves, which means the 80 billion or so we’re issued at birth have to last a lifetime. Neurons are also extremely stretched out (the longest ones run from the bottom of the backbone to the tip of each big toe) which means each nucleus has to monitor and maintain its roughly two million mitochondria over a great distance.

Before Evans launched her investigation in 2016, research on epithelial cells—those that line the surface of the body and its organs—had identified two proteins, PINK1 and Parkin, that seem to be mutated in patients with Parkinson’s disease. But, confusingly, disabling those proteins in mice in the lab didn’t lead to the mouse equivalent of Parkinson’s. To Evans, that suggested that the story of neural mitophagy must be more complicated.

To find out how, she went back to basics. Her lab watched rodent brain cells in a dish as they processed dysfunctional mitochondria. Evans gradually cranked up the stress they experienced by removing essential nutrients from their growth medium. This, she argues, is more akin to what happens in an aging human body than the typical process, which uses potent chemicals to damage mitochondria.

Results she published in 2020 in the journal eLife found that disposing of damaged mitochondria takes significantly longer in neurons than it does in epithelial cells. “We think, because [this slowness] is specific to neurons, that it may put neurons in a more vulnerable state,” she explains. Evans has also helped identify additional proteins that are involved in the best-known repair pathway—and determined that that action takes place in the soma, or main body, of a neuron but not in its threadlike extensions, known as axons. That, she says, could mean there’s a separate pathway that’s maintaining the mitochondria in the axon. Now, she wants to identify and understand that one too.

Thoroughly documenting these mechanics will take time, but Evans says charting the system could lead to precious medicine. “If we understand what goes wrong,” she says, “We might be able to diagnose people earlier… and be more targeted in trying to develop better treatment options.”—M.G.

Mapping every human cell

aaron-streets-brilliant-10
Aaron Streets: Associate Professor, Bioengineering, Computational Biology, and Biophysics; University of California, Berkeley Michelle Tran/Berkeley Computing, Data Science, and Society

It took the Human Genome Project a decade to lay out our complete genetic code. Since then, advances in sequencing technology have vastly sped up the pace by which geneticists can parse As, Gs, Ts, and Cs, which has allowed biologists to think even bigger—by going smaller. Instead of spelling out all of a person’s DNA, they want to create a Human Cell Atlas that characterizes the genetic material of every single cell in the body. Doing so will create “a reference map of what a healthy human looks like,” explains bioengineer Aaron Streets.

Understanding what makes individual cells unique requires insight into the epigenome—the suite of chemical instructions that tell the body how to make many kinds of cells out of the same string of DNA. “This is where the notion of the epigenome comes into play,” says Streets, who runs a lab at the University of California, Berkeley. All cells may be reading from the same book, but each one’s epigenome highlights the most relevant passages—essentially how and which genes are expressed. Streets is inventing the tools scientists need to zero in on those specifics.

Reading the epigenome is important, says Streets, because, in addition to showing why healthy cells act the way they do, it can also reveal why an individual one goes haywire and causes illness—cancer, for example. Once the markers of a rogue actor are known, he explains, researchers can develop therapeutics that address the question: “How can we engineer the epigenome of cells to fix the disease?”

Characterizing cells is highly interdisciplinary work, which Streets is perfectly suited for. He majored in art and physics but “just wasn’t good at” biology organismal studies. It wasn’t until graduate school, where he worked with a physicist-turned-bioengineer, that he realized how much insights gleaned from math, physics, and engineering could benefit the study of living things.

As a start, this year Streets and his colleagues published a protocol in the journal Nature Methods for reading particularly mysterious parts of the genome. The tool identifies sections within hard-to-read DNA regions that bind proteins—and thus have epigenomic significance—by bookending the strings with chemical markers called methyl groups. To James Eberwine, a pharmacology professor at the University of Pennsylvania and a pioneer of single-cell biology, “it is going to be very useful” for building a cell atlas.

Now, Streets’s lab is building new software to piece together the millions of sequences that comprise a single cell’s genome. And, because mapping every single anatomical cell will require a fair bit of teamwork, the programs they create are shared freely with other scientists who can use the tools to make their own discoveries. “If you look at really huge leaps in progress in our understanding of how the human body works,” says Streets, “they correlate really strongly with advances in technology.”—Y.T.

Crunching the numbers to get ahead of outbreaks

Daniel-Larremore-brilliant-10
Daniel Larremore: Assistant Professor; University of Colorado Boulder Glenn Asakawa, University of Colorado Boulder

Like everyone in early 2020, Daniel Larremore wondered whether this virus making its way around the globe was going to be a big deal. Would he have to cancel the exciting academic workshop he had planned for March? What about his ongoing research on the immune-evading genes of malaria parasites?

As the answers became clear, so did his next big task: predicting the trajectory of the disease so that scientists and policymakers could get ahead of it. “You have a background in infectious diseases and mathematical modeling,” thought the University of Colorado Boulder computer scientist. “If you’re not going to make a contribution when there’s a global pandemic, when are you going to step up?” He put his work on the epidemiology of malaria on hold as he emailed colleagues studying the emerging outbreak to ask how his lab could help. “I sent that mid-March,” he says, “and didn’t stop working until early to mid-2021.”

Before coming to Boulder, Larremore had been a postdoctoral candidate at Harvard T.H. Chan School of Public Health, where he was first immersed in the world of infectious disease—how it was transmitted, how it evaded immunity, and how to model its spread. It prepared him well for the first wave of COVID-19 research questions, which were all about working around the shortcomings of antibody tests. At the time, they were the only tools available for counting infections, but their sensitivity and specificity varied widely. A paper he co-authored in those early months described how to estimate infection rate, a key metric in justifying public health measures like mask mandates and social distancing.

As the pandemic wore on, Larremore and his collaborators continued to think forward: “What’s the question we’re going to be asking six months from now that we’ll wish we had the answer to right away?” The research they conducted now underpins much of American COVID policy: Their modeling found that speed, not accuracy, in testing was more important for curbing viral spread; that the success of immunity passports depended on the prevalence and infectiousness of the virus; and that elderly and medically vulnerable people should be prioritized for vaccination. “Dan did a huge amount of work across a number of different disciplines, and I think the contributions he’s made have really been remarkable,” says Yonatan Grad, an associate professor at the Harvard T.H. Chan School of Public Health who frequently collaborates with Larremore.

While his work on COVID-19 winds down, Larremore is already helping develop a general theory of disease mitigation involving at-home testing. Through modeling, he’s hoping to find out how much testing might slow the spread of different infectious diseases—and how that changes with disease or the variant. He’s excited about leveraging the jump in public science literacy induced by COVID-19: “If you tell people to self-collect a nasal swab, they’ll do a great job at it,” he says. He imagines a world where the public can reliably self-diagnose common illnesses like flu, and take the appropriate steps (wearing a mask, opening windows) to protect others. “That just seems really empowering,” says Larremore. “And, potentially, a cool future.” —Y.T.

The post The Brilliant 10: The top up-and-coming minds in science appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
A new experimental fabric can turn a coat into a mini solar farm https://www.popsci.com/technology/solar-cell-fabric/ Mon, 17 Oct 2022 18:30:00 +0000 https://www.popsci.com/?p=478611
Woman sitting down on couch charging smartphone
The solar cells embedded in clothing can't even be felt by wearers. Deposit Photos

A new woven textile containing 1,200 miniature solar cells could one day find its way into jackets and backpacks.

The post A new experimental fabric can turn a coat into a mini solar farm appeared first on Popular Science.

]]>
Woman sitting down on couch charging smartphone
The solar cells embedded in clothing can't even be felt by wearers. Deposit Photos

The latest fashion breakthrough is taking “activewear” in an entirely new direction: researchers at Nottingham Trent University have developed a new fabric featuring interwoven minuscule photovoltaic cells capable of recharging electronic devices like mobile phones and smartwatches. Per the school’s announcement last week, the prototype swatch includes 1,200 minuscule solar panels—each measuring just 5 by 1.5 millimeters—that can generate 400 milliwatts (mWatts) from the sun, which is enough to keep small gadgets juiced thanks to the renewable energy source.

A piece of cloth could keep your phone charged.
A piece of cloth could keep your phone charged. Nottingham Trent University

“Until now very few people would have considered that their clothing or textiles products could be used for generating electricity,” explains Theodore Hughes-Riley, lead researcher and an associate professor of Electronic Textiles. “… [T]he material which we have developed, for all intents and purposes, appears and behaves the same as any ordinary textile, as it can be scrunched up and washed in a machine.” Researchers also note that, because the tiny solar cells are comprised of silicon, wearers aren’t able to even notice a difference in the fabric’s composition when compared to standard clothing.

[Related: Best solar panel of 2022.]

Potential scaled-up usages include constructing items like outerwear, backpacks, and other carrying bags using the material, all of which could allow wearers to keep their devices charged while on-the-go during the day. “Electronic textiles really have the potential to change people’s relationship with technology, as this prototype shows how we could do away with charging many devices at the wall,” adds Hughes-Riley.

Solar power innovations are key to transitioning human society away from fossil fuel technologies, and are cropping up in a variety of different fields. The European Space Agency, for example, plans to experiment with solar panel systems orbiting above Earth. Since there are no real “days” or “nights” in space—not to mention zero cloud coverage—potential solar power generation could be as much as 8 or 9 times greater than what’s currently achievable here on the planet’s surface. As powerful as that may one day be for us, it’s encouraging to know that even small changes like the composition of our clothing can help usher in the necessary renewable energy shift for our species.

The post A new experimental fabric can turn a coat into a mini solar farm appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
A wind turbine just smashed a global energy record—and it’s recyclable https://www.popsci.com/technology/offshore-wind-turbine-record-energy/ Thu, 13 Oct 2022 20:00:00 +0000 https://www.popsci.com/?p=477595
Siemens Gamesa wind turbine against blue sky backdrop
The Siemens Gamesa turbine generated 359 megawatt-hours in just 24 hours. Siemens Gamesa

The new offshore turbine could power a Model 3 Tesla for over 1 million miles.

The post A wind turbine just smashed a global energy record—and it’s recyclable appeared first on Popular Science.

]]>
Siemens Gamesa wind turbine against blue sky backdrop
The Siemens Gamesa turbine generated 359 megawatt-hours in just 24 hours. Siemens Gamesa

Siemens Gamesa announced Monday that its breakthrough development in offshore wind turbine technology, the 14-222 DD offshore prototype, has set a new world record for the most energy generated over 24 hours. As first reported by news outlets earlier this week, the prototype delivered 359 megawatt-hours in a single day—roughly enough to power 18,000 households, or keep a Tesla Model 3 charged for over 1 million miles.

“With every new generation of our offshore direct drive turbine technology—which uses fewer moving parts than geared turbines—component improvements have enabled greater performance while maintaining reliability,” Siemens Gamesa explains via the turbine’s fact sheet.

[Related: Best home wind turbines of 2022.]

One of the keys to the 14-222 DD offshore prototype’s success are its “revolutionary” blades cast from a single, gigantic piece of recyclable resin. Although the company’s “RecyclableBlade” technology first appeared in an earlier turbine generation last year, additional construction advancements have further optimized its offerings via its latest project.

“We are proving that as the leaders of the offshore revolution, we are committed to making disruptive technology innovation commercially viable with the pace that the climate emergency demands,” Marc Becker, CEO of the Siemens Gamesa Offshore Business Unit, told The Independent.

[Related: Scientists think we can get 90 percent clean energy by 2035.]

Advancements in renewable wind energy technology are heartening to see as climate change‘s effects rapidly become increasingly dire for the world’s populations. Recently, the first utility-scale facility comprised of a solar, wind, and battery triple threat came online in northern Oregon. The setup reportedly can power 100,000 homes thanks to its combined 300 megawatts of wind, 50 megawatts of solar, and 30 megawatts of battery storage.

According to Siemens Gamesa, the 14-222 DD turbine is slated to go into production in 2024, and already has preorders from wind farms off the coasts of the US, UK, and Taiwan.

The post A wind turbine just smashed a global energy record—and it’s recyclable appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The US’s first utility-scale renewable energy triple threat is online in Oregon https://www.popsci.com/environment/renewable-energy-solar-wind-storage-oregon/ Fri, 07 Oct 2022 20:00:00 +0000 https://www.popsci.com/?p=476034
Wheatridge Renewable Energy Facility
This is the first development of the three technologies in action on this scale in the US. Portland General Electric

The rare combination of solar, wind, and battery storage should hopefully soon be more common.

The post The US’s first utility-scale renewable energy triple threat is online in Oregon appeared first on Popular Science.

]]>
Wheatridge Renewable Energy Facility
This is the first development of the three technologies in action on this scale in the US. Portland General Electric

What’s better than one type of clean energy? A triple threat of technologies working together to bring renewables to the grid. Just last week, the first utility-scale energy facility combining solar, wind, and battery storage opened up and started providing power in northern Oregon. Between 300 megawatts of wind, 50 megawatts of solar, and 30 megawatts of battery storage, the triple-powered project can power around 100,000 homes using clean energy. 

The project, called Wheatridge Renewable Energy Facilities is co-owned by NextEra Energy Resources, LLC, and Portland General Electric (PGE).

Solar and wind energy naturally work well together because of their opposite power hours—wind tends to be strongest at night, and the sunniest hours are during the day. Still, a  key part here is the battery storage, which provides a little bit of an extra cushion for the intermittency of solar and wind energy. With all that storage, energy can be harnessed on demand, even if the sun and wind are nowhere to be seen.

Before the passage of the Inflation Reduction Act, renewable energy projects that incorporated storage were largely just stuck with solar, because “energy storage was only incentivized under the tax code when it was associated directly and solely with a solar project,” Gregory Wetstone, president and CEO at the American Council on Renewable Energy, told Utility Dive. But since the massive climate bill passed, the door has opened for battery projects to nestle in with wind and other renewables as well.

[Related: Scientists think we can get 90 percent clean energy by 2035.]

In 2007, Oregon set emissions reductions targets at 10 percent below 1990 levels by 2020 and 75 percent below 1990 levels by 2050, and the governor ordered even tighter targets in 2020. Emissions targets for energy delivered to retail customers are ambitious: emissions must be reduced by at least 80 percent by 2030, 90 by 2035 and 100 percent by 2040.

But they are getting there—in 2020, 68 percent of utility-scale electricity generation was from renewables, according to the US Energy Information Administration. For PGE and NextEra, this project represents another step forward. 

“By supporting innovative projects like Wheatridge, we continue to accelerate renewable energy solutions for our state, communities and customers, while maintaining reliability and affordability,” Maria Pope, president and CEO of Portland General Electric said in a press release. “This partnership marks a technological milestone in decarbonizing our system and making clean energy accessible to all Oregonians.”

Even outside the US, projects incorporating wind, solar, and battery storage are rare. One such project just came online in March in the Netherlands, and projects in Australia and the UK are underway. With climate policy back in action across the country, hopefully there will be more renewable energy team-ups in the future.

The post The US’s first utility-scale renewable energy triple threat is online in Oregon appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Even mining in shallow waters is bad news for the environment https://www.popsci.com/environment/shallow-water-mining-batteries-ev/ Mon, 03 Oct 2022 19:00:00 +0000 https://www.popsci.com/?p=474496
When seafloor organisms hurt, those impacts can be felt all the way up the chain of marine life.
When seafloor organisms hurt, those impacts can be felt all the way up the chain of marine life. Pexels

Electric vehicles and batteries are crucial for a lower-carbon future—but getting the materials needed is an environmental dilemma itself.

The post Even mining in shallow waters is bad news for the environment appeared first on Popular Science.

]]>
When seafloor organisms hurt, those impacts can be felt all the way up the chain of marine life.
When seafloor organisms hurt, those impacts can be felt all the way up the chain of marine life. Pexels

Batteries to store renewable energy and power electric vehicles are essential if countries, communities, and businesses hope to meet climate change and clean energy goals. But, these technologies require complicated-to-mine materials like lithium, cobalt, and nickel. And the demand for these minerals is only expected to increase—the market for battery cells is predicted to grow by more than 20 percent annually until 2030.

This increasing demand for batteries rustles up interest in seabed mineral extraction because the deep seafloor may contain enough minerals to support the transition to a low-carbon energy system.

However, deep-sea mining—the process of extracting minerals from the ocean below 200 meters—may destroy habitats and cause the loss of marine species. Is mineral extraction initiatives in shallow sea areas the key to meeting mineral demand sustainably? It’s unlikely, according to researchers.

Shallow-water mining isn’t necessarily a sustainable option

Shallow-water mining, defined as extracting materials at depths less than 200 meters deep under the water, is a contentious subject. Two factors are often considered it comes to the sustainability of deep-sea mining versus shallow-water mining: We have better knowledge of shallow-water ecosystems, and their biological communities have shorter recovery times, says Laura Kaikkonen, visiting scholar at the University of Helsinki Ecosystems and Environment Research Programme.

Deep-sea ecosystems are incredibly understudied, and the lack of data makes predicting the long-term impacts of mining very difficult. In addition, deep-sea species are long-lived and reproduce less often than their shallow-water counterparts. Therefore their populations will take much longer to recover, she adds. However, a recent study published in Trends in Ecology & Evolution argues that there are no thorough and impartial comparisons between the two. Consequently, the paper argues there are no justifications in favor of shallow-water mining.

“Despite ​claims about how shallow-water mining can be the environmentally and socially sustainable alternative to traditional mining, thus far there have not been any thorough evaluations of the impacts of different mining practices to back these claims,” says Kaikkonen, who was involved in the new study.

Shallow-water mining may save operational costs because it takes place closer to the shore, and dredging shallow seafloor minerals is often efficient. But, any mineral extraction from the seabed will result in several environmental changes, including disrupting shallow-water minerals and their massive role in the habitat of seafloor organisms. And when seafloor organisms hurt, those impacts can be felt all the way up the chain of marine life, Kaikkonen adds.

However, shallow-water ecosystems may be more tolerant of mining-related stressors like elevated turbidity, sediment burial, and noise levels, says Craig Smith, professor emeritus in the Department of Oceanography at the University of Hawai’i at Mānoa who was not involved in the study. That’s because shallow-water ecosystems usually experience noise and disruption from the surface more often than their deep-sea counterparts due to human activity.

That said, no matter how minimal, the noise, vibrations, and other impacts of mining operations may be detrimental—especially since the effects added would be on top of the stressors that already exist from human activities, pollution, and the impacts of climate change, says Kaikkonen. She adds that we must evaluate whether the short-term benefit from seafloor minerals is worth the permanent damage to ecosystems.

Shallow-water mining is likely to cause heavy metal contamination of the marine environment, damaging different habitat types that may take decades to recover, says Andrew K. Sweetman, professor of deep-sea ecology at the Heriot-Watt University who was not involved in the study. 

2021 Environmental Science and Pollution Research study assessed water and fish samples from fourteen monitoring stations to determine heavy metal contamination in the Persian Gulf. The authors found high concentrations of heavy metals like copper, nickel, and lead in water samples from stations near petrochemical plants. They also discovered that fish populations dwelling near the seafloor were more contaminated than those living within the top five meters of the water column, making them hazardous to human health.

More research about the environmental impacts of shallow-water mining is needed

Before rushing to exploit new mineral resources, research and development should be targeted to improve the use of what we already have, says Kaikkonen.

According to a 2022 commentary in One Earth, seabed mining is often justified by the incorrect assumption that land-based metal reserves are rapidly depleting. But, this isn’t true—the identified resources of nickel and cobalt on land can meet global demand for decades. Therefore, it’s essential to embrace circular economy practices that reuse, repurpose, and recycle minerals as much as possible to avoid the expansion of mining into the ocean.

For instance, nickel has a high recycling efficiency, and about 68 percent of all nickel from consumer products is recycled. However, plenty of factors stand in the way of increased recycling of cobalt and lithium. This includes inefficient collection infrastructure, product design without thinking of second-life uses, and price fluctuations of raw materials.

Although some extractive activity might be necessary to move to a carbon-negative economy, it must be done properly—which means doing baseline and impact assessments, says Sweetman. Smith suggests proceeding very slowly with deep-sea and shallow-water mining, allowing only one operation to happen until the resulting intensity and extent of the disturbance to ecosystems is well-understood. It’s essential to close the significant knowledge gaps on the potential impacts of mining before seafloor mining is allowed to proceed at a large scale, he adds. 

Protecting large areas from mining may also preserve regional biodiversity and ecosystem services, says Smith. The International Seabed Authority (ISA), an intergovernmental body of 167 member states and the European Union, was formed to protect the marine environment by regulating mining operations in international seabed areas. But, the group has faced controversy given that they have granted at least 30 exploration contacts covering more than 1.3 million square kilometers of the deep seafloor, leading some environmental activists to argue that they prioritize the development of deep-sea mining over environmental protection.

Shallow-water mining activities should not be considered the silver bullet to resolving the growing global need for metals. Fully powering the world’s growing demand for electric vehicles and storage—even with all currently known mineral resources—is unrealistic, says Kaikkonen. For a future that is sustainable for human life and the ecosystems that will be affected by growing demand, shrinking energy use is just as important as finding new ways to power the world.

The post Even mining in shallow waters is bad news for the environment appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
New cars sold in New York state must be zero-emissions by 2035 https://www.popsci.com/technology/new-york-electric-vehicles-2035/ Fri, 30 Sep 2022 13:30:00 +0000 https://www.popsci.com/?p=473933
Traffic in lower Manhattan.
Traffic in lower Manhattan. Deposit Photos

The decision comes about a month after a similar mandate was announced by California.

The post New cars sold in New York state must be zero-emissions by 2035 appeared first on Popular Science.

]]>
Traffic in lower Manhattan.
Traffic in lower Manhattan. Deposit Photos

New York Governor Kathy Hochul announced yesterday that all new vehicles purchased in the state must be zero-emission models beginning in 2035. To reach this goal, the governor said that 35 percent of new cars will need to be zero-emissions by the year 2026 and 68 percent by 2030. Additionally, all new school buses purchased will have to be zero-emissions by 2027, with the entire fleet meeting these standards by 2035.

“We’re really putting our foot down on the accelerator and revving up our efforts to make sure we have this transition—not someday in the future, but on a specific date, a specific year—by the year 2035,” said Hochul in yesterday’s press conference.

New York is the fourth most populous state in the United States and the second state to mandate zero-emissions vehicles by the year 2035 after California.

[Related: California poised to ban the sale of new gasoline-powered cars.]

Last month, The California Air Resources Board voted to ban the sale of gas-powered cars beginning in 13 years. Due to federal regulations, any state-led move to enforce stricter emissions rules must occur first in California. California was authorized with the ability to set its own emissions standards in 1970, when Congress passed the Clean Air Act. This ability to set emissions standards was granted to the populous western state due to smog conditions at the time.

However, the Clean Air Act does have a a provision that prevents states from setting their own emissions. So to use its emission setting power, California must first apply for a waiver with the Environmental Protection Agency (EPA). Once that step is complete, other states can follow.

New York’s State Department of Environmental Conservation has been tasked with implementing the necessary regulations to require that all new passenger cars, pickup trucks, and sport utility vehicles (SUV) sold in New York State will be be zero-emissions by 2035. These regulations were passed last year.

[Related: Everything you need to know about EV tax credits and the Inflation Reduction Act.]

The governor also announced a $10 million investment in the state’s Drive Clean Rebate program. She said the program could “help New Yorkers purchase and drive these vehicles.” She explained that an up-to-$2,000 rebate is available in all of New York’s 62 counties.

The New York Power Authority also recently completed the installation of its 100th high-speed EV charger. The installation was part of New York’s EVolve NY statewide charging network. According to Governor Hochul, New York State will receive $175 million from The Bipartisan Infrastructure Law’s $5 billion allocation for EV charging networks.

“So that’s going to help over 14 interstates in New York, especially ones used by the people in this community,” Hochul said. “So you’re going to see that you have no more excuses.”

The post New cars sold in New York state must be zero-emissions by 2035 appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Scientists think we can get 90 percent clean energy by 2035 https://www.popsci.com/environment/90-percent-clean-energy-by-2035/ Mon, 26 Sep 2022 18:00:00 +0000 https://www.popsci.com/?p=472671
Industry factory against cloudy sky
Experts agree that last 10-percent is the tricky part. Patrick Hendry/Unsplash

The last 10 percent will be the trickiest part.

The post Scientists think we can get 90 percent clean energy by 2035 appeared first on Popular Science.

]]>
Industry factory against cloudy sky
Experts agree that last 10-percent is the tricky part. Patrick Hendry/Unsplash

It’s rare to behold these days, but here’s some good news: A lot of scientists agree that a 90percent green energy infrastructure is not only possible, but that there are now clear pathways to making it a reality. The bad news? They really are having a tough time figuring out how to finish the job for that tricky little last 10 percent.

A new study published last week in in the research journal Joule details both the impediments and six possible solutions to ensuring the United States can reach the Biden administration’s 2035 goal for net-zero emissions in the electricity sector. Within those potential pathways are a mix of strategies, including further reliance on wind and solar energy production, hydrogen energy storage, and an expansion of our nuclear power capabilities. For example, as explained by the National Renewable Energy Laboratory (NREL), wind and solar energy would provide 60 to 80 percent of total generation in the least expensive electricity mix, with “the overall generation capacity grow[ing] to roughly three times the 2020 level by 2035—including a combined 2 terawatts of wind and solar.”

[Related: A century ago, wind power was a farming norm. What happened?]

“A 100 percent carbon-free power system will require a portfolio of resources,” Trieu Mai, a senior energy researcher for the National Renewable Energy Laboratory and the paper’s lead author, told Inside Climate News last week. “But humility is needed to accept that we don’t know … the optimal mix to solving the last 10 percent.” The NREL cites difficulties including the speed and exponential growth required to scale renewable energy sources, securing adequate research and development funding, and supply chain adaptation as key areas to ensure that last 10 percent push.

As Mai and their collaborators explain in their paper, the balancing act to achieve this lofty, yet wholly necessary, benchmark is a delicate one. There are numerous political and societal factors at play, such as cost concerns (nuclear and geothermal power can be pretty pricey, for example), near term viability (hydrogen power is far from market ready), and convincing a potentially hesitant public.

Of course, such a paper can’t lay out a specific path forward for the US, but instead present a host of options we need to consider what is the best and most likely way to address the existential threat at our doorstep. “We just want people to recognize that within each option, there are tradeoffs,” Mai told Inside Climate News. “We recognize the degree of uncertainty with all of these technologies, and we need to lay that out on the table.”

The post Scientists think we can get 90 percent clean energy by 2035 appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
A century ago, wind power was a farming norm. What happened? https://www.popsci.com/environment/first-wind-turbines-history/ Tue, 20 Sep 2022 20:00:00 +0000 https://www.popsci.com/?p=471105
Where the first wind turbines were proposed actually is where many are located today.
Where the first wind turbines were proposed actually is where many are located today. Sam Forson on Pexels

Harvesting the wind the way you harvest crops made a lot of sense in the 1920’s.

The post A century ago, wind power was a farming norm. What happened? appeared first on Popular Science.

]]>
Where the first wind turbines were proposed actually is where many are located today.
Where the first wind turbines were proposed actually is where many are located today. Sam Forson on Pexels

The following is an excerpt from The Big Fix: Seven Practical Steps to Save Our Planet by Hal Harvey and Justin Gillis.

Had you met Dew Oliver in 1926, you might have written him a check. A lot of people did, and came to regret it. He was a charming Texan running around Southern California in a cream-colored Stetson cow-boy hat, sporting a walrus mustache and talking up money making schemes. His boldest idea was a plan to capture the wind.

Mr. Oliver, like just about everybody else who passed through the San Gorgonio Pass, was mightily impressed by the winds there. The pass, created by the famed San Andreas Fault, is one of the steepest in the United States, with the mountains on either side rising nearly nine thousand feet above it. Like a lot of mountain passes, it functions as a wind tunnel. As the hot desert air of interior California rises, cooler air from the Pacific Ocean, to the west, rushes through the pass. The story goes that Mr. Oliver realized how strong those winds were when they blew his Stetson off his head.

His scheme was pretty simple, really. He wanted to erect a ten-ton steel funnel to capture the wind, then send it through propellers connected to a 25,000-watt generator. His intent was to sell the electrical power to the budding nearby resort town of Palm Springs. He apparently failed to realize that a local utility had already claimed the town and would not welcome an interloper. But he did get the thing built: by 1927, Mr. Oliver’s wind machine had been erected at a spot a few yards from where Interstate 10 passes today. A huge funnel on the front end was attached to a cylinder seventy-five feet long and twelve feet wide, with propellers inside to drive a secondhand generator Mr. Oliver had scrounged up. But even Mr. Oliver had underestimated the power of the wind: in the early testing, a propeller spun too fast and set the first generator afire. He found a bigger one. Yet the few customers he managed to sign up complained that the power from his machine was erratic. Needing more money to improve his equipment, Mr. Oliver undertook to sell stock to local people, and it seems he may not have been entirely honest with them about the risks of his venture.

One suspects the costs got away from him, but whatever the cause, the scheme failed. Mr. Oliver was hauled into court and convicted of selling stocks unlawfully. After a short stint in jail, he fled California, and his machine stood forlorn in the desert for years, eventually to be cut apart for scrap in World War II. Why would any investor be duped into writing checks for such a crazy plan? Actually, the notion of generating electricity from the wind was a hot idea in the 1920s, and many Americans had read about it, if not seen it working. On thousands of farmsteads that had not yet been connected to the electrical grid, families were eager to gain access to the new medium of the age: radio.

The Big Fix is available September 20, 2022.
The Big Fix is available September 20, 2022. Simon & Schuster

This new technology had soared in popularity in the mid-1920s, with five hundred new broadcasters going on the air in a single year, 1923. In the pre-radio era, farmers had gotten along with kerosene lanterns at night and no electrical power, but many now felt they had to get connected to the modern world. For one thing, critical farm news, including daily prices, was now being broadcast on the radio. Startup companies plied the countryside, selling kits that included a small wind turbine connected to a generator, a set of batteries, a radio, and an electric light or two. The devices were called wind chargers, and they were finally rendered obsolete in the 1940s, when one of Franklin D. Roosevelt’s New Deal programs delivered nearly universal access to the power grid. Many decades later, though, the cultural memory of the wind chargers would prove to be important. Deeply conservative people living in the middle of the country, who might have been expected to oppose such newfangled inventions as large commercial wind turbines, remembered hearing about wind chargers from their grandparents. The idea of harvesting the wind, the way you harvested a crop, would strike many of them as a perfectly sensible thing to do. 

By the time the wind-charger business collapsed in mid-century, it was clear you could generate significant amounts of electrical power from the wind. A few people had the vision to see how much bigger wind power could become: with extensive support from the Massachusetts Institute of Technology, a large-scale turbine was built in this era to feed electricity into the power grid. The turbine, installed atop a Vermont mountain called Grandpa’s Knob, operated intermittently but successfully for five years, sending power to the Champlain Valley below. The turbine broke near the end of World War II, and since power from the wind was somewhat more costly than power from conventional generators, the local utility decided not to pay for new turbines. Yet a dream had come to life, and it would not die. The most important scientist in American public life of that era, Vannevar Bush—who had been President Franklin Roosevelt’s science advisor during World War II—had kept a close eye on the project.

“The great wind-turbine on a Vermont mountain proved that men could build a practical machine which would synchronously generate electricity in large quantities by means of wind-power,” Dr. Bush wrote in 1946. “It proved also that the cost of electricity so produced is close to that of the more economical conventional means. And hence it proved that at some future time homes may be illuminated and factories may be powered by this new means.” While Dew Oliver’s project to generate wind power in the desert had come to naught, he had gotten one thing right: he had indeed found one of the best places in the nation to capture the wind. Half a century after his scheme went under, the idea of generating power at commercial scale with wind turbines would be reborn, and the San Gorgonio Pass would be one of the places where it happened.

Copyright © 2022 by Justin Gillis and Hal Harvey. From the forthcoming book THE BIG FIX: 7 Practical Steps to Save Our Planet by Hal Harvey and Justin Gillis to be published by Simon & Schuster, Inc. Printed by permission. 

The post A century ago, wind power was a farming norm. What happened? appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Biofuel is a ‘renewable’ resource, but climate change could soon limit its potential https://www.popsci.com/environment/biomass-carbon-capture-energy/ Thu, 15 Sep 2022 15:30:00 +0000 https://www.popsci.com/?p=470084
Biomass supply and availability ultimately depend on the climate.
Biomass supply and availability ultimately depend on the climate. Ron Lach on Pexels

While this fuel source isn’t without controversy, the global biofuel demand is expected to increase by 28 percent by 2026.

The post Biofuel is a ‘renewable’ resource, but climate change could soon limit its potential appeared first on Popular Science.

]]>
Biomass supply and availability ultimately depend on the climate.
Biomass supply and availability ultimately depend on the climate. Ron Lach on Pexels

Tapping into green energy such as hydropower, wind, and solar energy is more important now than ever. But, these three powerhouses are not the only “renewable” energy sources on the scene. Compared to hydro, wind, and solar, biomass had the largest percentage share of total US energy consumption in 2021. 

Biomass refers to renewable organic materials from plants and animals, which include wood and wood processing wastes, agricultural crops, and animal manure, among others. Natural biomass resources can help fulfill energy demand, and unlike other renewable energy sources, they can also be converted directly into biofuels for transportation use.

In 2021, the United States produced about 17.5 billion gallons of biofuels. While this fuel source isn’t without controversy, the global biofuel demand is expected to increase by 28 percent by 2026. However, biomass feedstocks are not immune to the impacts of climate change. 

Climate change poses a direct threat to biomass sources

To have biomass, ultimately, we need plants to grow. In a sense, biomass supply and availability ultimately depend on the climate. 

“Increasingly dryer and hotter weather conditions pose a threat to successful cultivation, and ultimately, the yield of agro-derived biomass feedstocks,” says Victor Ujor, assistant professor of food science at the University of Wisconsin-Madison. “With a near-global drop in rainfall, plant growth and yield will fall dramatically, if this trend continues.”

Aside from having fewer agricultural residues for use as biomass, lower crop yields can also lead to more and more non-agricultural land being converted to use for food crops. This could lead to a reduction in non-agricultural biomass and increased use of fertilizers, says James Clark, professor of chemistry at the University of York in England.

Wildfires are also happening more frequently, becoming bigger and more intense, and spreading further thanks to climate change. These raging fires can eliminate forest-derived plant biomass, most of which takes longer to grow, says Ujor. 

[Related: Biofuels are having a government-funding moment.]

Overall, worsening climate change threatens the availability of biomass, affecting not only the supply of biofuels, but also the capacity of a negative emission technology called bioenergy with carbon capture and storage (BECCS). Negative emission technologies refer to those that remove and sequester carbon dioxide from the air.

BECCS extracts bioenergy from biomass via combustion or processing, which may release emissions because plants absorb carbon from the atmosphere as they grow. However, these emissions are captured and stored through geologic sequestration, the method of securing carbon dioxide in underground geologic formations to prevent its release into the atmosphere. As of 2019, five facilities around the world were using BECCS technologies and capturing about 165,000 tons of carbon dioxide per year.

According to a new Nature study, the capacity of BECCS may decrease in the future due to the effects of climate change on crop yields and biomass feedstocks. Therefore, it must be utilized sooner rather than later, the authors argue.

If global mitigation strategies alongside large-scale BECCS are employed in 2040, global warming may reach 2.5 degrees Celsius in 2050 and 2.7 degree Celsius in 2100, says Clark, who was involved in the study.

Only by starting to use this strategy at a much larger scale by 2030 will we meet the Paris goal of limiting global warming to no more than 2 degrees Celsius by 2100, he adds. The study emphasizes that there is an urgency to use BECCS in the near future to mitigate climate change and avoid serious food crises, unless other negative emission technologies become available to compensate for its reduced capacity.

Bioenergy use still poses environmental risks—even when paired with carbon capture 

If BECCS can help blunt the release of carbon dioxide into the atmosphere, what’s preventing its large-scale deployment today?

The cost may be the single most important factor, says Ujor, and we still need massive investments in research to develop cost-effective BECCS strategies. Estimates show that it may cost up to $200 per ton of CO2 sequestered. This is costly compared to another negative emission technology called direct air capture with Carbon Storage (DACCS), which can cost as low as about $94 to $232 per ton of CO2 from the atmosphere.

“The cost of trapping, storing and compressing CO2 is enormous,” says Ujor. “At present, the economics does not yet add up positively to warrant scale up at the level that we direly need the technology to work.”

Also, the energy sources of BECCS operations are, for the most part, fossil-based, so it could be counterproductive to put more CO2 in the air in an effort to trap and store CO2, he adds. Shifting energy sources away from fossil fuels may be necessary first.

Technical barriers also exist, specifically, the safe storage of carbon dioxide. The security of a storage site is crucial because the leak of highly concentrated carbon dioxide would be dangerous for public safety, the ecosystem of the site, and the Earth’s climate. Extensive studies need to be conducted to determine how well and how safely CO2 can be stored without harming the environment, says Ujor. 

[Related: Tech to capture and reuse carbon is on the rise. But can it help the world reach its climate goals?]

However, BECCS remains controversial because of concerns about the sustainable scalability of the technology. According to Nathanael Greene from the Natural Resources Defense Council, the amount of land, water, and nutrients needed to produce enough biomass may threaten biodiversity, water supply, and nutrient balances. 

Based on integrated assessment models, a massive deployment of BECCS in an effort to limit the temperature increase to 1.5 degrees Celsius may require about 25 to 80 percent of current global cropland. Meanwhile, growing biomass crops for BECCS to meet the Paris goal of 2 degrees Celsius might require more than double the amount of water currently used worldwide in irrigation for food production. 

Given its potential impact on resources and biodiversity, the scale of BECCS deployment must remain within certain conditions where it is beneficial. For instance, the amount of carbon removed from the atmosphere through BECCS may be offset if there is a significant land-use change to meet a 1.5 degrees Celsius climate change target.

When it comes to bioenergy crops, there’s also the risk of taking arable land away from growing food. “If food is used to power cars or generate electricity or heat homes, either it must be snatched from human mouths, or ecosystems must be snatched from the planet’s surface, as arable lands expand to accommodate the extra demand,” says Guardian columnist George Monbiot.

Ujor says this may be mitigated by targeting reclaimed surface-mined lands for growing bioenergy crops, as well as continuing to develop strategies and plants that can do more with less. “We need to develop agro technologies that allow us to grow more with less,” he adds. “Breeding and engineering crops that generate greater yield whilst using less water and fertilizer—both for bioenergy and food crops—are particularly important to this quest.”

The post Biofuel is a ‘renewable’ resource, but climate change could soon limit its potential appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Are solar panels headed for space? https://www.popsci.com/environment/space-solar-panel-energy/ Tue, 06 Sep 2022 16:00:00 +0000 https://www.popsci.com/?p=467670
Solar PV panel up close.
Today—the roof. Tomorrow—outer space?. Pixabay

More sun and fewer clouds could make for super-powered energy production.

The post Are solar panels headed for space? appeared first on Popular Science.

]]>
Solar PV panel up close.
Today—the roof. Tomorrow—outer space?. Pixabay

Solar power is a major player in turning the world’s energy from carbon-emitting to climate-friendly—but who says those solar panels need to sit on Earth? The European Space Agency (ESA) has eyed space-based solar power since the beginning of this year. As of August, the agency is considering developing a program to start generating energy with photovoltaics in space. 

While space-based energy may sound a little out there, they aren’t the only major organization looking to outer space for our ever-growing clean energy needs. NASA has also taken an interest in generating space-based power. This unique technology might sound like science fiction, but it’s something that could become a significant source of energy in the not-too-distant future. 

How space-based solar power works

Before rocketing off into space, here’s a quick recap of how photovoltaic panels work. When the sun shines, photolvoltaic cells in the solar panel absorb the energy from light rays. Then, the energy creates a charge that moves inside an electric field within the cell, according to the Department of Energy

Space-based solar power involves putting photovoltaics in geostationary orbit—the same place where we have weather satellites—and sending the energy they collect back to Earth via a microwave power beam. The microwave power from space-based solar would be received at a power station and used to generate electricity. 

Ali Hajimiri, a professor of electrical engineering and co-director of the Space-Based Solar Power Project at Caltech, tells PopSci that space-based solar could be an efficient way of generating solar power. He says it may be even more efficient than putting solar panels on land.

[Related: Hawaii’s only coal plant will shut down for good in September.]

“There is no day and night or seasons or clouds in space. If you look at the total energy that’s available for photovoltaics in space, it’s eight to nine times higher,” Hajimiri says. 

Shooting microwave energy at the Earth from space might sound dangerous, but Hajimiri says it’s actually quite safe. “The way the system is designed and built, the energy density that you get is actually less than what you get from standing in the sun,” he says. “It’s actually less harmful than the sun because it’s what’s called nonionizing radiation. A lot of the energy that comes from the sun is ionizing, which is why standing too long in the sun gives people skin cancer.”

Hajimiri says the system could quickly be shut down if something went wrong, such as an electrical issue or if it got damaged.

His team has been developing the hardware needed to generate solar power in space. He adds that these systems could be set up in a modular fashion, which means they could be put together piece by piece. A square of photovoltaics could be sent up to start, and more components could be attached down the line. He says you could have a square kilometer of photovoltaics and generate a gigawatt of energy—enough to power around 750,000 homes

Who is getting involved with space-based solar?

No nation has deployed the technology yet, but space-based solar is gaining interest in areas beyond the US and Europe. China plans to test out space-based solar power in low Earth orbit in 2028, a lower altitude than geostationary orbit. Then, there are plans for the country to try for geostationary orbit in 2030. South Korea and Japan are also taking an interest

The lucky thing about space is there’s plenty of room to generate energy in Earth’s orbit, and the energy could quickly go wherever it’s needed, Hajmiri says. “You can also almost instantaneously change where the energy is going,” he says. “You can dynamically dispatch power.”

[Related: Floating solar panels could be the next big thing in clean energy.]

Currently, Earth’s atmosphere reflects about 30 percent of the sunlight that solar panels could collect. While this is important for keeping things from getting too hot on Earth, for energy purposes, that’s a lot of lost potential.

Space-based solar power, theoretically, could generate a lot of energy that’s currently going to waste simply because of where it is.

Many worry about how we’ll keep things running using solar panels when the sun goes down at night. Proposed solutions are often large batteries because they can charge when energy is being generated and discharge when it’s not. But storage wouldn’t be an issue for this type of energy system. 

“All of the technologies that are commonplace today are things that were scary or unknown at some point,” Hajimiri says. “We should not let the fear of the unknown dictate where we go.”

The post Are solar panels headed for space? appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
New ‘super-fast’ method can shave EV battery charging down to minutes https://www.popsci.com/technology/ev-charging-machine-learning/ Mon, 29 Aug 2022 16:30:00 +0000 https://www.popsci.com/?p=465830
Close up of electric vehicle charger plugged into electric car
Vastly shorter charge times could arrive to consumers within the next five years. Deposit Photos

Machine learning shows that even existing batteries can charge safely and speedily if you treat them right.

The post New ‘super-fast’ method can shave EV battery charging down to minutes appeared first on Popular Science.

]]>
Close up of electric vehicle charger plugged into electric car
Vastly shorter charge times could arrive to consumers within the next five years. Deposit Photos

Electric vehicles are key to a sustainable future for the planet, but while EVs continue their steady rise within the automotive industry, many drivers remain skeptical of making the major change. There are a number of factors behind consumer hesitancy, but one of the foremost concerns is just how long it takes to recharge a car’s battery. Owners can still expect between 15 and 30 minutes to re-up their EVs for another estimated 200-300 miles, while gas stations’ rates are obviously dramatically shorter—typically only a few minutes for around 400 miles.

Last week, however, a team of government researchers at the Department of Energy-run Idaho National Laboratory announced extremely promising new advancements that could help the US achieve the Biden administration’s lofty goal of making EVs half of all automotive sales by 2030. Thanks in part to a machine learning program analyzing vast amounts of lithium-ion battery data, scientists have reportedly found a means to safely and reliably recharge EVs’ power supplies up to 90 percent within just 10 minutes.

[Related: Biden pushes forward on electric cars, clean emissions.]

“Fast charging is the key to increasing consumer confidence and overall adoption of electric vehicles,” Idaho National Laboratory researcher Eric Dufek said in a release. “It would allow vehicle charging to be very similar to filling up at a gas station.”

When an EV’s lithium-ion battery charges, the ions migrate from the cathode to the anode. Faster migration means faster charging, but as researchers explained, this currently means lithium ions sometimes don’t fully make over to the anode, resulting in lithium metal buildups that cause battery failure, cathode cracking, and even explosions.

Achieving the charging goal required massive data troves to determine new methods that could quickly restore battery charges without doing significant, often irreparable damage to the battery itself. As The Washington Post explained last week, Dufek and colleagues designed an algorithm that analyzed somewhere between 20,000 and 30,000 data points from various kinds of lithium-ion batteries to determine the most efficient and safe recharging method, which they then tested on real batteries. The results created “unique charging protocols” based on the physics of what is exactly happening within batteries during charging and usage. The end goal, according to researchers, is to develop EVs that are able to “tell” charging stations how to recharge based on a vehicle’s specific battery.

[Related: Why Dyson is going all-in on solid-state batteries.]

The resultant designs drastically reduced charge times without sacrificing battery health and consumer safety. With faster charge times, car makers could also conceivably introduce vehicles with smaller (i.e. cheaper) batteries, thus lowering the economic barrier many face when considering EV purchases. And although Dufek and colleagues estimate consumers won’t see these kinds of charge times for EVs for about another 5 years, the prospect of such advancements will help solidify electric cars as the viable alternative to fossil fuel transportation moving forward.

The post New ‘super-fast’ method can shave EV battery charging down to minutes appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Everything you need to know about EV tax credits and the Inflation Reduction Act https://www.popsci.com/technology/electric-vehicle-tax-credits-explained/ Fri, 12 Aug 2022 14:04:20 +0000 https://www.popsci.com/?p=462051
The 2022 Mustang Mach-E, an EV from Ford.
The 2022 Mustang Mach-E, an EV from Ford. Ford

With the IRA in gear to become law, big changes are coming down the road for people who want to buy electric vehicles.

The post Everything you need to know about EV tax credits and the Inflation Reduction Act appeared first on Popular Science.

]]>
The 2022 Mustang Mach-E, an EV from Ford.
The 2022 Mustang Mach-E, an EV from Ford. Ford

A big change is coming down the pike in how the federal government encourages people to buy clean cars like electric vehicles. The Senate passed the Inflation Reduction Act (IRA) on August 7, and the House of Representatives could pass it today. Barring any last-minute shifts, automakers and car buyers will find themselves with new tax rules that are baked into that massive legislation after President Biden signs it into law. 

The changes, experts say, are restrictive in terms of what electric vehicles and potential buyers will qualify. However, it’s not all bad news, either. 

Here’s a look at what to expect in the EV space if the IRA becomes law. 

The current landscape 

First, it makes sense to consider the way tax credits have worked in the clean vehicle space, pre-IRA, in the United States. Currently, in some cases, as much as $7,500 is available as a tax credit to people who want to buy an electric vehicle or a plug-in hybrid. “The amount of money that you could credit from your taxes was based on the battery size, although the battery size limits were so low, that basically everything qualified for the $7,500,” says James Di Filippo, a senior policy analyst with Atlas Public Policy. 

The current system has some important rules. One of those is that the $7,500 is a tax credit towards the sum a person might owe the federal government in taxes. For example, imagine that a taxpayer owes exactly $7,500 in federal taxes for a certain year, and has been careful about their withholdings in their paycheck, paying the exact right amount throughout the year. Typically, come tax time in April, when that person and the IRS reconciled, neither party would owe anything. But, if that individual bought an EV that qualified for the $7,500 tax credit, the IRS would then cut them a check for that amount. “Typically, the way that it was working was people were just getting their money back when they filed their taxes,” Di Filippo observes. 

But Di Filippo points out that that system wasn’t fair, or equitable, across income levels. “The key equity implication of that is that the less you earn—at a certain threshold, basically—the less you get in that credit.” Imagine you only owned $1,000 in federal taxes, then the maximum you could gain in a credit was also $1,000. 

There’s another issue with the current system, too. The full $7,500 credit only applies to the first 200,000 qualifying vehicles a company makes, and then it diminishes and ends. “That particular cap was a point of contention,” Di Filippo adds. General Motors and Tesla, for example, have since surpassed that 200,000 figure already. 

Interested in reading up more on all this? Here’s where it is spelled out in US Code

The road ahead 

If the IRA becomes law in its current form, the system outlined above will change. For one, the 200,000 limit disappears. “That is going to be a humongous help—in theory—for automakers like Tesla, as well as General Motors,” reflects Robby DeGraff, an industry analyst with AutoPacific. 

Another change restricts people who make over a certain amount of money annually from getting the credit. For example, households that make more than $300,000 a year are out of luck, at least in the tax-credit department. Also, there are caps on the price of the vehicles: For example, a pickup truck that costs more than $80,000 would not be eligible; others are capped at $55,000. In short, expensive vehicles are left out. 

But other changes have to do with where a vehicle—and the parts in it—comes from. “The vehicle must be assembled in North America,” says Di Filippo. “And right away, that removes quite a few current vehicles on the market from eligibility.”

An ID.4 made by Volkswagen in Tennessee is in good shape at least with this requirement, but a Hyundai Ioniq 5, which is made overseas, not so much. 

[Related: Can the Chips and Science Act help the US avoid more shortages?]

Then there are other requirements pertaining to the provenance of the vehicle’s components. In particular, in the spotlight are the questions of where the battery components (like the cells) are assembled, and where the minerals in the battery—such as lithium and cobalt—are mined from and processed. Whether or not an automaker checks these boxes determines how much of the $7,500 might apply. “The battery mineral content and components really make up the two halves of that $7,500,” Di Filippo says. (In other words, some vehicles could qualify for smaller tax credits based on what boxes they do tick.) 

“Battery components have to be manufactured and assembled in North America, and if you meet the thresholds, which expand over time—starting in 2023, it’s 50 percent—then the vehicle is qualified for $3,750,” he explains. 

As for the minerals that go in a battery (here’s more on how a lithium-ion battery works), that part is tricky.

The new restrictions state that by 2023, 40 percent of the battery’s critical minerals need to come from—be extracted from, and processed in—a country that the US has a free-trade agreement with. That percentage requirement increases over time. And by 2025, none can come from China (which refines lithium) or Russia, for example. So even if the lithium was mined in Australia or Chile, an issue could remain if it was processed in another country.

“My understanding is no car manufacturer can hit that 40-percent target in 2023, as of right now,” Di Filippo says. “They may be able to scramble and change that.” 

The takeaway

Ultimately, the changes are restrictive, says Di Filippo. “From a consumer’s perspective, this is going to probably reduce, or almost certainly reduce, the number and value of EV credits going forward for the next few years at least.” 

There are some bright spots, though. One is that there will be up to a $4,000 tax credit that a person can get when buying a used EV from a dealer, provided their income is below a certain level ($75,000 for an individual person, for example). “The used EV tax credit, or clean vehicle credit, is a huge perk for consumers looking to get into electrification,” says DeGraff, of AutoPacific. 

Also, previously the tax credit was money that someone would generally get when they filed their taxes; now there will be a way for it to go into effect when people actually purchase the vehicle at a dealer. 

But still, there’s general concern about the effects of the legal changes on the electric vehicle market, as the CEO of the Alliance for Automotive Innovation wondered in a blog post titled: “What If No EVs Qualify for the EV Tax Credit? It Could Happen.” 

Ultimately, Di Filippo sees some improvements with the new policies over the old, but with an important caveat. “It’s a win for equity in the EV tax-credit policy space—of course none of that matters if nobody can buy a vehicle that can actually qualify for the tax credit,” he reflects. 

The post Everything you need to know about EV tax credits and the Inflation Reduction Act appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
How can electrified buildings handle energy peaks? https://www.popsci.com/environment/building-electrification-peak-energy/ Thu, 04 Aug 2022 16:00:00 +0000 https://www.popsci.com/?p=460132
House with solar panels on roof.
Electrifying is the first step, but guaranteeing clean electricity is the next. Unsplash

Intense weather can mean lots of energy use, so it's crucial to know where that energy comes from.

The post How can electrified buildings handle energy peaks? appeared first on Popular Science.

]]>
House with solar panels on roof.
Electrifying is the first step, but guaranteeing clean electricity is the next. Unsplash

In the US, buildings are a tremendous energy burden. About 70 million American homes and businesses burn fossil fuels for space heating, water heating, cooking, and other purposes, accounting for approximately 10 percent of all US greenhouse gas (GHG) emissions in 2017. One way to slim down those emissions is via electrification.

Building electrification is the process of replacing fossil fuel-powered systems and appliances in homes and buildings—such as gas furnaces, water heating, or stoves—with electric ones that run on clean energy to deliver climate, health, and economic benefits, says Stephanie Greene, managing director at RMI that leads their Carbon-Free Buildings Program.

Seasonal peaks in energy demand are typically managed using fossil fuels, but electrified buildings must rely on renewable energy and energy-efficient measures instead. There are, however, a few ways to make this transition less daunting. 

Electrified buildings must reduce strain on the electric grid during seasonal peaks

Throughout the year, energy demand usually experiences seasonal fluctuations. One 2022 Scientific Reports study identified that total energy consumption usually peaks in the coldest and hottest months due to energy-intensive measures like air conditioning and heating.

For gas-heated buildings, this fluctuation is currently managed via their connection to underground gas storage facilities—typically old oil fields or aquifers with old wells that were converted for gas storage—and some above-ground liquefied gas storage facilities, says Jonathan J. Buonocore, study author and assistant professor at the Boston University School of Public Health. Some also manage the fluctuations using propane, fuel oil, or wood as primary heating fuel. All of these have long-term storage capability, which means people can rely on them when needed.

“This peak in energy demand will still exist when buildings are electrified, and the electrical grid needs to be able to meet this demand,” Buonocore adds. “In order to truly result in energy decarbonization, this demand needs to be met with renewables.” 

According to the study, building decarbonization models need to account for the seasonal fluctuations to minimize strain on the nation’s electric grid during peaks. For instance, meeting the current winter peak in demand would require a 28-fold increase in January wind generation or a 303-fold increase in January solar energy generation in the US.

Reducing demand on the electric grid is also crucial. More efficient electric heating technologies must be installed in homes and buildings to bring sky-high energy peaks down to a more manageable level.

These technologies already exist: air and ground source heat pumps extract heat from the air or the earth to heat and cool buildings. Replacing gas furnaces with clean heat pumps will significantly reduce carbon emissions and minimize electricity use for heating by approximately 50 percent. “The higher the efficiency of the heating/cooling technology, the better,” says Buonocore.

Long-term energy storage that stores excess electricity generated by renewables for winter heating can also help provide more electricity when needed. Such measures can reduce the demand for renewable energy during winter peaks, only requiring 4.5 or 36 times more generation from wind and solar power, respectively.

Policymakers can improve pathways to building electrification

While it’s true that building electrification will increase the electric load, the growth will be at a manageable pace, which gives us time to plan and expand the grid with efficiency and flexibility in mind, says Greene. “We have a runway of time in front of us to modernize the grid, build out renewables, and make our buildings and technology more efficient,” she adds.

Potomac Electric Power Company (or Pepco), an electric utility company that supplies electric power to Washington, DC, conducted a study last year to assess the potential impact of electrification on their system. If electrification was the city’s primary method to achieve its decarbonization targets, they estimate that peak demand will grow at an average annual rate of 1.4 to 1.7 percent between 2021 to 2050. This is surprisingly manageable, considering the grid has handled growth rates above 2 percent in the past. Moreover, they add that energy efficiency and load flexibility could reduce the future load growth rate to less than 1 percent per year.

There are plenty of ways for policymakers to make building electrification possible and reduce the use of fossil fuels for heating and cooling. At the federal level, policymakers can provide manufacturer incentives to drive domestic production of efficient electric heat pump furnaces and water heaters. Greene says they could also develop direct rebates or tax credits for electric appliances and create zero- and low-interest financing tools for electrification.

The Biden administration plans to support efficiency upgrades and building electrification by using more widely heat pumps and induction stoves, adopting modern energy codes for new buildings, and investing in new technologies associated with construction. Last June, President Biden authorized the Defense Production Act (DPA) to accelerate the production of clean energy technologies such as heat pumps, building insulation, and critical power grid infrastructure.

At the state level, policymakers can enforce policies that make buildings efficient from their inception, says Greene. In New York, a landmark bill was introduced to require new buildings and infrastructure across the state to be all-electric by 2024. New York would be the first state to mandate all-electric buildings if it passes. Almost 60 cities or counties in California have also adopted gas-free building commitments or electrification building codes. “New construction should be all-electric and efficient, net-zero carbon buildings,” she adds.

Policymakers can also reform electric rates to ensure low-income families see lower bills from electrification, build new incentives and pilot programs to allow people to electrify at zero or low costs, and help rural communities shift from wood and propane to highly-efficient all-electric homes. Last week, the Biden administration announced several actions to lower electricity bills for working families, which include connecting states and households to low-cost solar power.

Low-income households tend to face additional barriers to electrification. Still, it’s essential to implement thoughtful policies that help make their homes greener and their electricity bills more manageable to further reduce carbon emissions.

The post How can electrified buildings handle energy peaks? appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
This solar tower makes jet fuel from sunbeams, water, and gas https://www.popsci.com/science/solar-tower-jet-fuel/ Wed, 20 Jul 2022 22:00:00 +0000 https://www.popsci.com/?p=457487
In the ceramic box atop a solar tower, a chemical reaction takes place that makes jet fuel.
Sunlight focuses on a ceramic box atop the solar tower in Madrid. ETH Zurich

It's a smart way to make propellent that cuts back on carbon-intensive processes in flying.

The post This solar tower makes jet fuel from sunbeams, water, and gas appeared first on Popular Science.

]]>
In the ceramic box atop a solar tower, a chemical reaction takes place that makes jet fuel.
Sunlight focuses on a ceramic box atop the solar tower in Madrid. ETH Zurich

At first glance, you might think the structure tucked away in a Madrid suburb is a solar power plant. Perched in an industrial park, the facility features an audience of solar reflectors—mirrors that concentrate blinding sunlight to the top of a tower.

But this plant isn’t for generating electricity. It’s for generating jet fuel.

For the past several years, researchers from several different institutions in Switzerland and Germany have been using it to test a method to create propellant—normally a carbon-intensive process involving fossil fuels—using little more than sunlight and greenhouse gases captured from the atmosphere. They published their results in the journal Joule today.

What happens inside their tower is a bit of chemistry known as the Fischer-Tropsch process. Under certain conditions, hydrogen gas and carbon monoxide (yes, the same toxic gas from vehicle exhaust) can react. They rearrange their atoms into water vapor and hydrocarbons. Those carbon compounds include diesel, kerosene, and other fuels that you might otherwise produce by dirtying your hands and refining petroleum.

Though the tower is new, the underlying process isn’t a recent invention; two chemists—named, naturally, Fischer and Tropsch—pioneered it in Germany nearly a century ago. But it’s historically been something of an afterthought. You need some source of that carbon monoxide: typically coal, natural gas, or their byproducts. It’s useful if you have limited access to petroleum, but less helpful if you’re trying to clean up the transport sector.

[Related: All your burning questions about sustainable aviation fuel, answered]

Now, with the intensifying climate crisis kindling interest in cleaner fuels, there’s growing demand for alternate carbon sources. Biological waste is a popular one. This plant takes a different approach: capturing carbon dioxide from the atmosphere. 

That’s where 169 solar reflectors beam sunlight into the picture. Atop the 50-foot-tall structure, their light—on average, 2,500 times brighter than the sun—strikes a porous ceramic box made from cerium, the rare-earth element number 58. That draws water and carbon dioxide from the air and splits their atoms into hydrogen gas and carbon monoxide.

“We have been developing the science and technology for more than a decade,” says Aldo Steinfeld, an engineer at ETH Zürich in Switzerland and one of the paper authors. Steinfeld and his colleagues had first demonstrated the box method in the lab in 2010. By  2017, they’d begun building the plant.

In that plant, the newly created gases sink to the bottom of the tower, where they enter a shipping container that carries out the Fischer-Tropsch reactions. The end result is fossil-fuel-free kerosene, produced by pulling carbon dioxide from the air. The researchers say it can be pumped into fuel tanks, today, without issue.

Before the global pandemic, aviation accounted for less than 3 percent of the world’s carbon dioxide emissions. Land vehicles, in contrast, spewed out more than six times as much. But, while we’ve already started to replace the world’s road traffic with electric cars, there just isn’t a viable alternative for aircraft yet.

So the aviation industry—and governments—are trying to focus on alternative sources, such as biofuels. Though their exact timeline is still up in the air, European regulators may require non-fossil-fuel sources to provide as much as 85 percent of the fuel pumped at European Union’s airports by 2050.

In this environment, the Fischer-Tropsch process has entered the stage. Last year, a German nonprofit named Atmosfair opened a plant near the Dutch border that produces synthetic kerosene. It relies on a complex interplay of solar electricity and waste biogas to get its chemical components. Since the Atmosfair plant opened, it has produced eight barrels of kerosene a day: barely a drop in the 2.3-billion-gallon bucket that the world used in the year 2019.

The solar kerosene planet in Spain follows in its footsteps, though Steinfeld says the sun makes getting hydrogen and carbon monoxide much simpler. Still, just like Atmosfair’s plant, it’s only an early drop. “The facility is relatively small compared to a commercial-scale one,” says Steinfeld. But he and his colleagues believe that it’s an important demonstration.

[Related: Floating solar panels could be the next big thing in clean energy]

According to Steinfeld, meeting the entire aviation’s sector would require solar kerosene plants to cover an area of around 17,500 square miles, roughly the size of Estonia. That does sound large, but Steinfeld looks at it differently: A relatively small parcel of a sparsely inhabited hot desert could supply all the world’s planes. 

(There’s precedent for something like it: Sunny Morocco has already become a solar power hub, and the country is planning to export some of that power to relatively cloudier Britain.)

For now, Steinfeld says the next steps are to make the process more efficient. Right now, a meager 4.1 percent of the solar energy striking the ceramic box actually goes into making gas. The researchers think they could considerably boost that number.

The post This solar tower makes jet fuel from sunbeams, water, and gas appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>